Poly-dopamine-Beta-Cyclodextrin Modified Glassy Carbon Electrode as a Sensor for the Voltammetric Detection of L-Tryptophan at Physiological pH

Main Article Content

Mohammad Hasanzadeh
Nasrin Shadjou
Sattar Sadeghi
Ahad Mokhtarzadeh
Ayub karimzadeh

Abstract

The main purpose of this report was to develop application of poly-dopamine-beta-cyclodextrin modified glassy carbon electrode (PDA-β-CD-GCE) towards electrooxidation and determination of L-Tryptophan (L-Trp) and also the evaluation its kinetic parameters. In continuation of our efforts to use PDA-β-CD-GCE for amino acids detection, our objective in the present work was to expand application of this sensor for the determination of L-Trp which is very sensitive.

Article Details

Hasanzadeh, M., Shadjou, N. S., Sadeghi, S., Mokhtarzadeh, A., & karimzadeh, A. (2017). Poly-dopamine-Beta-Cyclodextrin Modified Glassy Carbon Electrode as a Sensor for the Voltammetric Detection of L-Tryptophan at Physiological pH. Journal of Forensic Science and Research, 1(1), 001–009. https://doi.org/10.29328/journal.jfsr.1001001
Research Articles

Copyright (c) 2017 Hasanzadeh et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Wang H, Cui H, Zhang A, Liu R. Adsorptive stripping voltammetric determination of tryptophan at an electrochemically pre-treated carbon-paste electrode with solid paraffin as a binder. Anal Commun. 1996; 33: 275-277. Ref.: https://goo.gl/PpUEw3

Ensafi AA, Maleh HK, Mallakpour S. Simultaneous Determination of Ascorbic Acid, Acetaminophen, and Tryptophan by Square Wave Voltammetry Using N‐(3, 4‐Dihydroxyphenethyl)‐3, 5‐Dinitrobenzamide‐Modified Carbon Nanotubes Paste Electrode. Electroanalysis. 2012; 24: 666-675. Ref.: https://goo.gl/M9yyYv

Kia M, Islamnezhad A, Shariati S, Biparva P. Preparation of voltammetric biosensor for tryptophan using multi-walled carbon nanotubes. Korean J Chem Eng. 2011; 28: 2064-2068. Ref.: https://goo.gl/rNfJTy

Li C, Ya Y, Zhan G. Electrochemical investigation of tryptophan at gold nanoparticles modified electrode in the presence of sodium dodecylbenzene sulfonate. Colloids Surf B. 2010; 76: 340-345. Ref.: https://goo.gl/ZD48qj

Raoof JB, Ojani R, Baghayeri M. Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode. Sens. Actuat B. 2009; 143: 261-269. Ref.: https://goo.gl/Pfz8Lr

Li W, Li C, Kuang Y, Deng P, Zhang S, et al. A carbon paste electrode modified with a cobalt(II) coordination polymer for the direct voltammetric determination of tryptophan. Microchim Acta. 2012; 176: 455-461. Ref.: https://goo.gl/hSSSAL

Mirrahimi F, Taher MA, Beitollahi H, Hosseinzadeh R. Electrocatalytic and selective determination of d-penicillamine in the presence of tryptophan using a benzoylferrocene-modified carbon nanotube paste electrode. Appl Organomet Chem. 2012; 26: 194-198. Ref.: https://goo.gl/tQz0jr

Goyal RN, Bishnoi S, Chasta H, Aziz MA, Oyama M. Effect of surface modification of indium tin oxide by nanoparticles on the electrochemical determination of tryptophan. Talanta. 2011; 85: 2626-2631. Ref.: https://goo.gl/rdkoaM

Prabhu P, Babu RS, Narayanan SS. Electrocatalytic oxidation of L-tryptophan using copper hexacyanoferrate film modified gold nanoparticle graphite-wax electrode. Colloids Surf B. 2011; 87: 103-108. Ref.: https://goo.gl/AeQbQ2

Fan Y, Liu JH, Lu HT, Zhang Q. Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Microchim Acta. 2011; 173: 241-247. Ref.: https://goo.gl/GI8pYy

Shahrokhian S, Bayat M. Pyrolytic graphite electrode modified with a thin film of a graphite/diamond nano-mixture for highly sensitive voltammetric determination of tryptophan and 5-hydroxytryptophan. Microchim Acta. 2011; 174: 361-366. Ref.: https://goo.gl/C0Lt9P

Akhgar MR, Salari M, Zamani H. Simultaneous determination of levodopa, NADH, and tryptophan using carbon paste electrode modified with carbon nanotubes and ferrocenedicarboxylic acid. J Solid State Electrochem. 2011; 15: 845-853. Ref.: https://goo.gl/iCliL7

Deo RP, Lawrence NS, Wang J. Electrochemical detection of amino acids at carbon nanotube and nickel-carbon nanotube modified electrodes. Analyst. 2004; 129: 1076-1081. Ref.: https://goo.gl/a7k2O1

Dong S, Zhang S, Chi L, He P, Wang Q, et al. Electrochemical behaviors of amino acids at multiwall carbon nanotubes and Cu2O modified carbon paste electrode. Anal Biochem. 2008; 381: 199-204. Ref.: https://goo.gl/MjGRGA

Liu X, Luo L, Ding Y, Kang Z, Ye D. Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry. 2012; 86: 38-45. Ref.: https://goo.gl/4rYGyG

MacDonald SM, Roscoe SG. Electrochemical oxidation reactions of tyrosine, tryptophan and related dipeptides. Electrochim Acta. 1997; 42: 1189-1200. Ref.: https://goo.gl/ecL64l

Ye D, Luo L, Ding Y, Liu B, Liu X. Fabrication of Co3O4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Analyst. 2012; 137: 2840-2845. Ref.: https://goo.gl/Qa4a3L

Nan CG, Feng ZZ, Li WX, Ping DJ, Qin CH. Electrochemical behavior of tryptophan and its derivatives at a glassy carbon electrode modified with hemin. Anal Chim Acta. 2002; 452: 245-254. Ref.: https://goo.gl/03JFdu

Guo Y, Guo S, Fang Y, Dong S. Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan. Electrochim Acta. 2010; 55: 3927-3931. Ref.: https://goo.gl/6AITnB

Hasanzadeh M, Sadeghi S, Bageri L, Mokhtarzadeh A, Karimzadeh A, et al. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH. Materials Science and Engineering: C. 2016; 69: 343-357. Ref.: https://goo.gl/ZQLfSR

Xu J, Shang F, Luong JH, Razeeb KM, Glennon JD. Direct electrochemistry of horseradish peroxidase immobilized on a monolayer modified nanowire array electrode. Biosens Bioelectron. 2010; 25: 1313-1318. Ref.: https://goo.gl/mC7XN0

Kissinger P, Heineman WR. Laboratory Techniques in Electroanalytical Chemistry, 2nd edition. CRC Press. 1996; 224. Ref.: https://goo.gl/R8aLMx

Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications, 2nd edition. John Wiley & Sons. 2001; 236, 503 and 709. Ref.: https://goo.gl/IHWNCG

Brett CM, Brett AO. Electrochemistry: principles, methods and applications. Oxford University Press. 1993; 427. Ref.: https://goo.gl/KJGhjg

Pariente F, Lorenzo E, Tobalina F, Abruna H D. Aldehyde Biosensor Based on the Determination of NADH Enzymically Generated by Aldehyde Dehydrogenase. Anal. Chem. 1995; 67: 3936-3944. Ref.: https://goo.gl/GmreuX

Harrison JA, Khan ZA. The oxidation of hydrazine on platinum in acid solution. J Electroanal Chem Interfacial Electrochem. 1970; 28: 131-138. Ref.: https://goo.gl/MIMhIr

Liu X, Luo L, Ding Y, Ye D. Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of L-tryptophan. Bioelectrochemistry. 2011; 82: 38-45. Ref.: https://goo.gl/zTPOK1

Xu J, Yuan Y, Li W, Deng P, Deng J. Carbon paste electrode modified with a binuclear manganese complex as a sensitive voltammetric sensor for tryptophan. Microchim Acta. 2011; 174: 239-245. Ref.: https://goo.gl/RztqNx

Tang X, Liu Y, Hou H, You T. Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Talanta. 2010; 80: 2182-2186. Ref.: https://goo.gl/U1lRjw

Jiang Q, Sun W, Jiao K. Electrochemical behavior and determination of L-tryptophan on carbon ionic liquid electrode. J Anal Chem. 2010; 65: 648-651. Ref.: https://goo.gl/F95aWJ

Xu M, Ma M, Ma Y. Electrochemical determination of tryptophan based on silicon dioxide nanopartilces modified carbon paste electrode. Russ J Electrochem. 2012; 48: 489-494. Ref.: https://goo.gl/nRtCK5

Güney S, Yıldız G. Determination of tryptophan using electrode modified with poly(9-aminoacridine) functionalized multi-walled carbon nanotubes. Electrochim Acta. 2011; 57: 290-296. Ref.: https://goo.gl/UL4S2P

Shahrokhian S, Fotouhi L. Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan. Sens Actuat B. 2007; 123: 942-949. Ref.: https://goo.gl/kns7s3

Mao S, Li W, Long Y, Tu Y, Deng A. Sensitive electrochemical sensor of tryptophan based on Ag@C core-shell nanocomposite modified glassy carbon electrode. Anal Chim Acta. 2012; 738: 35-40. Ref.: https://goo.gl/93j5YD

Deng KQ, Zhou JH, Li XF. Direct electrochemical reduction of graphene oxide and its application to determination of L-tryptophan and L-tyrosine. Colloids Surf B. 2013; 101: 183-188. Ref.: https://goo.gl/t8eDEe

Szunerits S, Coffinier Y, Galopin E, Brenner J, Boukherroub R. Electrochem Commun. 2010; 12: 438-441. Ref.: https://goo.gl/GNdG80

Safavi A, Momeni S. Electrocatalytic Oxidation of Tryptophan at Gold Nanoparticle-Modified Carbon Ionic Liquid Electrode. Electroanalysis. 2010; 22: 2848-2855. Ref.: https://goo.gl/FsEzql