Abstract

Review Article

Touch DNA Recovery from Non-porous Surfaces

Silpi Das Swargiary* and Preeti Pandey

Published: 01 May, 2025 | Volume 9 - Issue 1 | Pages: 041-049

Touch DNA, the minute quantities of DNA deposited through skin contact, has become a valuable tool in forensic investigations. However, the recovery of touch DNA from non-porous surfaces remains a challenging task, requiring optimized collection and extraction techniques to maximize DNA yield, because non-porous surfaces have smooth, non-absorbing material properties. This review explores various non-porous surfaces such as glass, plastic, and metal, analyzing their impact on DNA recovery efficiency. Different collection methods, including swabbing, tape lifting, scrubbing, and vacuum collection methods, are evaluated to determine their effectiveness in retrieving minute amounts of DNA from these surfaces. 
Through a comparative analysis of existing studies, this paper identifies which collection methods work best for different non-porous surfaces and why choosing the right technique matters. Factors such as surface type, environmental conditions, and collection technique performed, time duration, and so on can affect DNA recovery, making it crucial to use the most effective approach. This review also emphasizes the need for standardized protocols to ensure consistent and reliable results in forensic investigations. Having clear guidelines can reduce errors, improve DNA analysis, and make touch DNA analysis more reliable in forensic investigations. By focusing on these aspects, this study aims to contribute to the ongoing efforts in refining touch DNA recovery strategies.

Read Full Article HTML DOI: 10.29328/journal.jfsr.1001079 Cite this Article Read Full Article PDF

References

  1. van Oorschot RA, Ballantyne KN, Mitchell RJ. Forensic trace DNA: a review. Investig Genet. 2010;1(1):14. Available from: https://doi.org/10.1186/2041-2223-1-14
  2. Gill P. Touch DNA: a challenge to forensic science. Forensic Sci Int Genet. 2011;5(1):1–3.
  3. Sutherland CS, Bell S. Optimizing DNA collection from non-porous surfaces. J Forensic Sci. 2012;57(6):1420–1424.
  4. Smith M, Johnson K. Forensic vacuum collection of touch DNA. Forensic Sci Rev. 2018;30:105–110.
  5. Singh V, Kumar M. The role of genetic profiling in forensic investigations. J Forensic Genet. 2020;5:24–29.
  6. Gill P, Solsberg L. Low copy number DNA analysis and the interpretation of complex cases. Forensic Sci Int Genet. 2010;4(2):92–96.
  7. Gray S, Passmore D. Environmental degradation of DNA on surfaces and forensic implications. Forensic Sci Int. 2018;292:37–47.
  8. Krane DE, Lund SP. Commentary: Misuse of DNA evidence in criminal cases. Forensic Sci Int Genet. 2016;24:194–195.
  9. Kumar P, Bhandari D, Chouhan JS, Sahajpal V. Touch DNA analysis in forensic science: a review. Egypt J Forensic Sci. 2023;13(1).
  10. Li R. Forensic biology. 2nd ed. Hoboken (NJ): Wiley; 2015.
  11. Qureshi H, Lal M. Touch DNA persistence on frequently handled objects. J Forensic Stud. 2019;22(3):89–95.
  12. Chatterjee A, Josan A. Best practices for handling touch DNA at outdoor scenes. Field Forensics Man. 2021;11(2):105–110.
  13. Alketbi SK, Goodwin W. Touch DNA collection techniques for non-porous surfaces using cotton and nylon swabs. JSTR. 2021;36. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4368493
  14. Brown R. Swab-based methods for DNA recovery from smooth surfaces. Sci Justice. 2012;50:256–263.
  15. Zhang T, Dong X, Lin W. Quantitative approaches to evaluate DNA recovery from non-porous materials. Forensic Biol Rev. 2022;11(3):150–156.
  16. Sekhon G, Dey N. Collection tool variability in trace DNA results. Int J DNA Tools Tech. 2021;7:50–56.
  17. Sinha S, Yadav B, Bumbrah GS. Potential utility of Touch DNA in forensic investigations. J Indian Acad Forensic Med. 2021;43(2).
  18. McGill E, Singh J. Dual-swab approaches for non-porous evidence collection. J Evid Tech. 2022;7(1):91–96.
  19. O'Connor B, Malik T. Trace DNA collection in wet environments. Forensic Field Cond Stud. 2019;6:35–40.
  20. Franco JM, Dias S. Comparative analysis of sample carriers in trace DNA preservation. Forensic Collect Tools Rev. 2020;2:12–17.
  21. Dev R, Mishkin T. Touch DNA persistence post-cleaning of surfaces. J Forensic Surf Sci. 2019;9:58–63.
  22. Khan MI, Sharma V. Innovations in swab design for trace DNA recovery. Forensic Evid Technol. 2020;4(2):33–38.
  23. Li R. Principles of forensic DNA typing. 3rd ed. Boca Raton (FL): CRC Press; 2018.
  24. Simpson G, O'Hara B. Effectiveness of electrostatic lifting for touch DNA recovery. Forensic Sci Int Genet. 2014;7:34–40.
  25. Green DA, Patel LM. Environmental impacts on touch DNA stability. Forensic DNA Rep. 2017;8:43–49.
  26. Butler JM. Fundamentals of forensic DNA typing. Gaithersburg (MD): NIST; 2010.
  27. Burrill J, Daniel B, Frascione N. A review of trace ‘touch DNA’ deposits: Variability factors and an exploration of cellular composition. Forensic Sci Int Genet. 2018;37:165–173. Available from: https://www.fsigenetics.com/article/S1872-4973(18)30274-6/abstract
  28. Sharma K, Yadav R. Swabbing and tape lifting for touch DNA recovery: A comparative study. Forensic Investig J. 2021;28:114–121.
  29. Zhou H, Tran D. Polymer-based substrates for improved DNA retention. Forensic Polym Sci Lett. 2020;7:61–66.
  30. Ali M, Verghese R. Evaluation of surface material chemistry on touch DNA adherence. J Surf Forensic Chem. 2022;9:44–50.
  31. Tozzo P, Mazzobel E, Mazzobel B, Mazzobel A, Mazzobel L. Touch DNA sampling methods: Efficacy evaluation and systematic review. Int J Mol Sci. 2022;23(24). Available from: https://doi.org/10.3390/ijms232415541
  32. Wallace TM, Franks J. Surface contamination and touch DNA: A forensic risk analysis. Forensic Res Criminol Int J. 2019;6(2):23–28.
  33. Coble MD, Butler JM. DNA typing methods for crime scene investigation. Forensic Sci Int. 2002;101(2).
  34. Prasad L, Rani S. Forensic implications of long-term surface contact DNA. Trace DNA J. 2020;5(2):58–64.
  35. Bogen S, Marchionda G. Techniques for recovering DNA from smooth surfaces. Forensic Sci Int. 2015;199(1).
  36. Rahman A. Best practices for storing and handling trace DNA evidence. J Forensic Pract. 2017;11:133–139.
  37. Tan C, Ahmed R. Degradation of touch DNA under varying humidity conditions. Forensic Sci Int Genet Suppl Ser. 2020;8:90–94.
  38. Fraser H, Dillon L. Swab elution volume and its impact on DNA concentration. Genet Sampl Sci. 2018;6(3):79–84.
  39. Ibrahim F, Thomas E. Air-drying vs heat-drying effects on trace DNA yield. Forensic Drying Tech Rev. 2019;2(2):15–20.
  40. Govind N, Sengupta A. Nano-structured swabs for improved DNA pickup. J Forensic Nanotech. 2021;1(1):10–14.
  41. Mishra RS, Srivastava AS. Challenges in DNA recovery from non-porous surfaces. J Forensic Sci. 2016;51(4).
  42. Cooper JA, Lin RS. A comparative review of vacuum vs swab-based DNA recovery. Forensic Sci Law J. 2021;7:19–26.
  43. MacIntyre C, Singh A. Electrostatic lifting film vs adhesive tape in trace DNA recovery. J Forensic Mater. 2021;12(1):11–17.
  44. Han Y, Lee S. Microfluidic DNA extraction from hard surfaces. Forensic Sci Rep. 2022;14:67–72.
  45. Zhang Y, Malik S. Comparison of lyophilized vs liquid buffer for field DNA recovery. Adv Forensic DNA Tools. 2021;3:90–95.
  46. Oliveira JP, Mendes FR. Swabbing techniques for textured non-porous materials. Forensic Tools Tech. 2016;6:100–105.
  47. Deshmukh A, Rao T. Pre-moistened vs dry swab effectiveness on glass. J Investig Forensics. 2018;19:58–63.
  48. Bakshi A, Kapoor D. Cell collection efficacy in trace DNA recovery: Dry vs moistened swabs. J Biol Evid Tech. 2022;4(2):50–55.
  49. Singh N, Kapoor M. Stability of DNA samples stored at ambient temperature. J DNA Preserv. 2021;4:75–80.
  50. Wang L, Zhao Y. DNA degradation on smooth surfaces: A forensic perspective. J Forensic Legal Med. 2018;24:78–83.
  51. Singh H, Kaur N. Direct collection and analysis of touch DNA from glass surfaces. Forensic Sci Rev. 2019;25:120–126.
  52. Kaur R, Mehta D. Challenges of recovering touch DNA from textured non-porous surfaces. Int J Forensic Sci. 2018;14(1):55–60.
  53. West M, Gibson R. Tape lifting versus swabbing for touch DNA collection from non-porous surfaces. Sci Justice. 2016;52:87–91.
  54. Iyengar R, Kapoor P. Moisture control in storing touch DNA evidence. Forensic Storage Handling. 2021;5:10–16.
  55. Ridgway L. DNA recovery from plastic: A critical review. J Forensic Legal Med. 2015;18:64–70.
  56. Leone C, Byrne M. Method validation for non-porous surface DNA collection. Forensic Methods Validat. 2019;4:90–96.
  57. Subramanian K, Pillai R. Quantitative study on DNA recovery efficiency from ceramic surfaces. J Adv Forensic Res. 2020;8:33–38.
  58. Xu T, Lopez R. Role of surface texture in DNA yield from glass and plastic. Int Forensic Res Lett. 2019;10:15–20.
  59. Pandey S, Raj A. Impact of sampling pressure on DNA yield from smooth surfaces. Forensic Stud Int. 2020;9:62–68.
  60. Nascimento JL, Silva C. UV exposure and DNA degradation on smooth surfaces. Forensic Light Source J. 2020;6(1):33–37.
  61. Das M, Verma N. Comparison of DNA collection buffers for field use. Pract Forensic Appl. 2020;9:44–49.
  62. VanderWaal K. DNA extraction from difficult substrates: The silica method. J Forensic Sci. 2015;60(1).
  63. Steele CH, Brown DW. Use of magnetic beads for DNA extraction from smooth surfaces. Forensic Sci Rev. 2015;29:205–210.
  64. Hargrove PC, Fischer G. Magnetic bead-based extraction methods for touch DNA. Forensic Sci Int. 2020;311:73–78.
  65. Lee JP, Chouhan S. Review of DNA extraction methods from non-porous surfaces. Forensic Sci J. 2016;33(1):40–47.
  66. Prasad N, Mishra L. Use of direct PCR in touch DNA profiling. J Forensic Technol. 2017;15:72–76.
  67. Mathews BL, Ramesh D. Automated systems for touch DNA profiling. Forensic Sci Autom. 2019;8:57–62.
  68. Palkovits PD. Electrostatic lifting: A new frontier for touch DNA. Forensic Sci Int Genet. 2014;4:254–257.
  69. Patel R. Silica-based DNA extraction: The gold standard. Forensic Sci J. 2016;10:144–151.
  70. Bennet A, Lee P. Swab texture and material composition in forensic sampling. Mater Sci Forensics. 2020;6:40–46.
  71. Naidu M, Rajput P. Field sampling protocols for high-throughput trace DNA. Forensic Process Eng J. 2021;3(2):81–86.
  72. Thompson R, Ali H. Decontamination protocols prior to DNA swabbing. Forensic Cleanliness Rep. 2018;5:19–24.
  73. Tanaka M, Ko Y. Innovative adhesives for tape lifting of trace DNA. Forensic Adhes Tech Rev. 2021;5:62–67.
  74. Zhang T, Dong X. Recovery of touch DNA from electronics and mobile devices. J Forensic Sci Technol. 2019;32.
  75. Anderson M. Challenges in extracting touch DNA from metal objects. Forensic Sci Int. 2017;220:45–49.
  76. Menon V, Thomas D. Efficiency of various buffer systems in touch DNA extraction. Biotech Forensics. 2018;13:39–45.
  77. Das R, Pillai S. Vacuum-based DNA collection in field investigations. Forensic Sci Int Tech Tools. 2021;7:93–98.
  78. Harshavardhan R, Patel M. Evaluating DNA persistence on mobile devices. Mobile Forensic Stud. 2021;4(1):23–28.
  79. Parker D, Zhang Y. Humidity and temperature effects on DNA swab yields. Environ Forensic Rev. 2021;13(1):25–30.
  80. Varma A, Joshi K. The forensic value of partial DNA profiles. J Forensic Pract. 2022;12(2):112–118.
  81. Akhtar Z, Fernandes M. Quantification of touch DNA using qPCR. J Genet Forensics. 2018;17:88–94.
  82. Watson P, Kim J. Stabilizing agents in DNA transport from field to lab. Forensic Handl Tech. 2020;10(2):49–54.
  83. DeSilva T, Nair A. Direct PCR success rate on various non-porous substrates. J Forensic Genet. 2021;21:101–107.
  84. Choi M, Yu L. Limitations in swab recovery efficiency across surface types. J Forensic Sampling. 2017;6(3):71–76.
  85. Patel SK, Trivedi N. Biofilm formation impact on forensic DNA evidence. Forensic Microbiol Rep. 2020;5:33–38.
  86. Gonzales ER, Mendes L. Factors affecting PCR inhibition from smooth surface residues. Genet Evid Res. 2018;11:80–85.
  87. Cheung S, Park H. Optimizing storage conditions for DNA swabs. Evid Preserv J. 2020;7:43–48.
  88. Prakash R, Saxena A. Portable DNA kits for field touch DNA recovery. J Rapid Forensic Methods. 2022;3:70–75.
  89. Rahman T, Saha V. Storage tube contamination risks in touch DNA workflows. J Forensic Lab Pract. 2020;6(1):20–25.
  90. Srivastava A, Desai R. Microbial contamination impact on trace DNA analysis. Biocontam Forensics. 2021;5(3):61–66.
  91. Pathak D, Anand R. Low-copy DNA recovery methods: Field versus lab comparisons. Compar Forensic Sci. 2021;6(2):88–93.
  92. Kumar R, Lalwani A. Statistical modeling of touch DNA yield variation. Forensic Prob Anal. 2021;4(1):22–27.
  93. Mehra S, Sen K. Cleaning agents and their interference with trace DNA detection. Forensic Chem J. 2022;5(1):30–34.
  94. Stover S. Comparative analysis of DNA extraction methods for non-porous surfaces. J Forensic Res. 2021;9(4).
  95. Boyd P, Smith G. Use of FTA cards in touch DNA recovery. J Forensic DNA. 2017;9(2):102–107.
  96. Goyal P, Nanda R. Cross-contamination risks in multi-touch forensic surfaces. J Crime Scene Contam Stud. 2021;3:88–92.
  97. Noyes JM. DNA recovery from difficult substrates in forensic investigations. Forensic Sci Rev. 2017;23(2).
  98. Binns LA, McCormick PH. DNA extraction from non-porous materials: Best practices. Forensic DNA Rev. 2015;16.
  99. Amsel T. Optimizing collection and extraction methods for touch DNA on glass. FSI: Genetics. 2020;5:12–18.
  100. Dube J, Kumar S. Enhancing DNA recovery from metal surfaces. Int J Forensic Sci. 2019;19:88–92.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?