Abstract

Review Article

Challenges in Y-DNA Recovery from Fabric: Effects of Environmental Degradation and Implications for Forensic Casework

Naina Sharma and Surya Shekhar Daga*

Published: 04 July, 2025 | Volume 9 - Issue 2 | Pages: 117-124

Y-chromosomal DNA (Y-DNA) testing plays a critical role in forensic investigations involving male suspects, especially when traditional autosomal DNA evidence is insufficient or degraded. This review explores how different environmental factors—such as heat, moisture, Ultraviolet (UV) exposure, and microbial activity—impact the ability to recover Y-DNA from fabrics commonly found at crime scenes, including cotton, polyester, and denim. The study found that longer exposure to harsh environments, especially humidity and UV radiation, led to a sharp drop in the amount and quality of recoverable Y-DNA. The type of fabric also influenced results, with cotton generally retaining more DNA than synthetic materials like polyester. These findings reinforce the need for quick evidence collection and proper storage to preserve the integrity of Y-DNA.  Several real-world cases are highlighted where Y-DNA analysis provided clear forensic outcomes, especially when autosomal DNA failed due to issues like allelic dropout—where one or more genetic markers fail to appear during testing—or secondary transfer, which occurs when DNA is unintentionally passed from one surface or person to another. In such cases, Y-DNA profiling was crucial in narrowing down or identifying male suspects, particularly when other forms of DNA were inconclusive. This review underscores the unique value of Y-DNA analysis in situations involving degraded or limited biological material and calls for the development of better recovery techniques to improve success in challenging forensic contexts.

Read Full Article HTML DOI: 10.29328/journal.jfsr.1001090 Cite this Article Read Full Article PDF

Keywords:

Y-DNA; Fabric evidence; Environmental degradation; Forensic DNA recovery; Sexual assault; Forensic science

References

  1. Kayser M. Forensic use of Y-chromosome DNA: a general overview. Hum Genet. 2017;136(5):621–35. Available from: https://doi.org/10.1007/s00439-017-1776-9
  2. Ambers A, Votrubova J, Vanek D, Sajantila A, Budowle B. Improved Y-STR typing for disaster victim identification, missing persons investigations, and historical human skeletal remains. Int J Legal Med. 2018;132(6):1545–53. Available from: https://doi.org/10.1007/s00414-018-1794-8
  3. Avicenna F, Yudianto A, I’tishom R, Wungu CDK. Effect of machine-washing semen-stained fabrics on the persistence of human spermatozoa DNA: A systematic review of five articles. Legal Med. 2022;60:102179. Available from: https://doi.org/10.1016/j.legalmed.2022.102179
  4. Seah LH, Othman MI, Jaya P, Jeevan N. DNA profiling on fabrics: an in-situ method. Int Congr Ser. 2004;1261:565–7. Available from: https://doi.org/10.1016/s0531-5131(03)01832-6
  5. Jeromelj T, Leskovar T, Pajnič IZ. The impact of storage conditions on DNA preservation in human skeletal remains: a comparison of freshly excavated samples and those stored for 12 years in a museum depot. Genes (Basel). 2025;16(1):78. Available from: https://doi.org/10.3390/genes16010078
  6. Bonnet J, Colotte M, Coudy D, Couallier V, Portier J, Morin B, et al. Chain and conformation stability of solid-state DNA: implications for room temperature storage. Nucleic Acids Res. 2009;38(5):1531–46. Available from: https://doi.org/10.1093/nar/gkp1060
  7. Bhoyar L, Mehar P, Chavali K. An overview of DNA degradation and its implications in forensic casework. Egypt J Forensic Sci. 2024;14(1):15. Available from: https://doi.org/10.1186/s41935-024-00389-y
  8. Stojanović I, Stefanović A, Ilić G. DNA degradation of bloodstains on cotton fabric caused by different washing procedures. Forensic Sci Med Pathol. 2024 Jan. Available from: https://doi.org/10.1007/s12024-023-00768-2
  9. Latham KE, Miller JJ. DNA recovery and analysis from skeletal material in modern forensic contexts. Forensic Sci Res. 2018;4(1):51–9. Available from: https://doi.org/10.1080/20961790.2018.1515594
  10. Zhang J, Li X, Li L, Chen A, Zhang S. Y-STR analysis of highly degraded DNA from skeletal remains over 70 years old. Forensic Sci Res. 2024;9(2):owae020. Available from: https://doi.org/10.1093/fsr/owae020
  11. Oliveira M, Marszałek K, Kowalski M, Frolova A, Łabaj PP, Branicki W, et al. Sequencing Technologies in Forensic Microbiology: Current trends and advancements. Forensic Sci. 2024;4(4):523–45. Available from: https://doi.org/10.3390/forensicsci4040035
  12. Ahannach S, Gehrmann T, Spacova I, Wittouck S, Hiers J, Bron P, et al. Microbial and seminal traces of sexual intercourse and forensic implications. Res Square. 2024 May. Available from: https://doi.org/10.21203/rs.3.rs-4302243/v1
  13. Bulman P. Solving Cold Cases with DNA: The Boston Strangler Case [Internet]. Washington (DC): National Institute of Justice;. Available from: https://nij.ojp.gov/topics/articles/solving-cold-cases-dna-boston-strangler-case
  14. Kayser M. Forensic use of Y-chromosome DNA: A general overview. Hum Genet. 2017;136:621–35. Available from: https://doi.org/10.1007/s00439-017-1776-9
  15. Syndercombe Court D. The Y chromosome and its use in forensic DNA analysis. Emerg Top Life Sci. 2021;5:427–41. Available from: https://doi.org/10.1007/s00439-017-1776-9
  16. Ge J, Crysup B, Peters D, Franco R, Liu M, Wang X, et al. MPKin-YSTR: Interpretation of Y chromosome STR haplotypes for missing persons cases. Electrophoresis. 2023;44(7-8):1080–7. Available from: https://doi.org/10.1002/elps.202200225
  17. Zhang J, Li X, Li L, Chen A, Zhang S. Y. STR analysis of highly degraded DNA from skeletal remains over 70 years old. Forensic Sci Res. 2024;9(2):owae020. Available from: https://doi.org/10.1093/fsr/owae020
  18. Quintana-Murci L, Fellous M. The human Y Chromosome: The biological role of a “Functional wasteland.” BioMed Res Int. 2001;1(1):18–24. Available from: https://doi.org/10.1155/s1110724301000080
  19. Cooke H. Y chromosome and male infertility. Rev Reprod. 1999;4(1):5–10. Available from: https://doi.org/10.2741/krausz
  20. Sullivan KM, Mannucci A, Kimpton CP, Gill P. A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques. 1993;15(4):636–8,640–1. Available from: https://pubmed.ncbi.nlm.nih.gov/8251166/
  21. Court DS. The Y chromosome and its use in forensic DNA analysis. Emerg Top Life Sci. 2021;5(3):427–41. Available from: https://doi.org/10.1042/etls20200339
  22. Dittenber DB, GangaRao HV. Critical review of recent publications on the use of natural composites in infrastructure. Compos Part A Appl Sci Manuf. 2011;43(8):1419–29. Available from: https://doi.org/10.1016/j.compositesa.2011.11.019
  23. Farah S, Kunduru KR, Tsach T, Bentolila A, Domb AJ. Forensic comparison of synthetic fibres. Polym Adv Technol. 2015;26(7):785–96. Available from: https://doi.org/10.1002/pat.3540
  24. Ueland M, Howes JM, Forbes SL, Stuart BH. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons were studied using ATR-FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2017;185:69–76. Available from: https://doi.org/10.1016/j.saa.2017.05.044
  25. Seah LH, Othman MI, Jaya P, Jeevan N. DNA profiling on fabrics: an in-situ method. Int Congr Ser. 2004;1261:565–7. Available from: https://doi.org/10.1016/s0531-5131(03)01832-6
  26. Dittenber DB, GangaRao HV. Critical review of recent publications on the use of natural composites in infrastructure. Compos Part A Appl Sci Manuf. 2011;43(8):1419–29. Available from: https://doi.org/10.1016/j.compositesa.2011.11.019
  27. Aronson JD, Cole SA. Science and the Death Penalty: DNA, Innocence, and the Debate over Capital Punishment in the United States. Law Soc Inq. 2009 Summer;34(3):603–33. Available from: https://doi.org/10.1111/j.1747-4469.2009.01159.x
  28. Al-Griw HH, Zraba ZA, Al-Muntaser SK, Draid MM, Zaidi AM, Tabagh RM, et al. Effects of storage temperature on the quantity and integrity of genomic DNA extracted from mice tissues: A comparison of recovery methods. Open Vet J. 2017;7(3):239. Available from: https://doi.org/10.4314/ovj.v7i3.7
  29. Karni M, Zidon D, Polak P, Zalevsky Z, Shefi O. Thermal degradation of DNA. DNA Cell Biol. 2013;32(6):298–301. Available from: https://doi.org/10.1089/dna.2013.2056
  30. Al-Griw HH, Zraba ZA, Al-Muntaser SK, Draid MM, Zaidi AM, Tabagh RM, et al. Effects of storage temperature on the quantity and integrity of genomic DNA extracted from mice tissues: A comparison of recovery methods. Open Vet J. 2017;7(3):239. Available from: https://doi.org/10.4314/ovj.v7i3.7
  31. Khanthusang A, Khacha-Ananda S. The stability of semen stain on different kinds of fabric buried in soil. BIO Web Conf. 2025;163:02001. Available from: https://doi.org/10.1051/bioconf/202516302001
  32. Wang Y, Dang Z, Zhang G, Li S, Liu Q, Li C, et al. Genetic diversity and haplotype structure of 27 Y-STR loci in a Han population from Jining, Shandong province, eastern China. Forensic Sci Int Genet. 2019;42:e25–e26. Available from: https://doi.org/10.1016/j.fsigen.2019.06.008
  33. Nimmanorraluk P, Vongyuttakrai P, Tavattana T. A study on waste reduction through machine adjustment and ratio formulation in nonwoven fabric material production. J Ind Educ. 2013;7(2):33–41.
  34. Matheson CD, Gurney C, Esau N, Lehto R. Assessing PCR Inhibition from Humic Substances. Open Enzyme Inhib J. 2014;3(1):38–45. Available from: https://benthamopen.com/contents/pdf/TOEIJ/TOEIJ-3-38.pdf
  35. Kurniati R, Suryawati N, Utami DW, Siregar HM, Mulyono J, Susilowati M, et al. Phenotypic characteristics of varieties of chrysanthemum in lowland area cultivation. BIO Web Conf. 2023;69:01002. Available from: https://doi.org/10.1051/bioconf/20236901002
  36. Owen DH, Katz DF. A review of the physical and chemical properties of human semen and the formulation of a semen simulant. Andrology. 2005;26(4):459–69. Available from: https://doi.org/10.2164/jandrol.04104
  37. Alvarez FJ, Ryman K, Hooijmaijers C, Bulone V, Ljungdahl PO. Diverse Nitrogen Sources in Seminal Fluid Act in Synergy to Induce Filamentous Growth of Candida albicans. Appl Environ Microbiol. 2015;81(8):2770–80. Available from: https://doi.org/10.1128/aem.03595-14
  38. Javurek AB, Spollen WG, Ali AMM, Johnson SA, Lubahn DB, Bivens NJ, et al. Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status. Sci Rep. 2016;6(1):23027. Available from: https://doi.org/10.1038/srep23027
  39. Anderson MT, Byerly L, Apicella MA, Seifert HS. Seminal Plasma Promotes Neisseria gonorrhoeae Aggregation and Biofilm Formation. J Bacteriol. 2016;198(16):2228–35. Available from: https://doi.org/10.1128/jb.00165-16
  40. Raffi RO, Moghissi KS, Sacco AG. Proteins of human vaginal fluid. Fertil Steril. 1977;28(12):1345–8. Available from: https://doi.org/10.1016/s0015-0282(16)42982-1
  41. Ma B, Forney LJ, Ravel J. Vaginal Microbiome: Rethinking Health and Disease. Annu Rev Microbiol. 2012;66(1):371–89. Available from: https://doi.org/10.1146/annurev-micro-092611-150157
  42. Dash HR, Das S. Microbial degradation of forensic samples of biological origin: Potential threat to human DNA typing. Mol Biotechnol. 2017;60(2):141–53. Available from: https://doi.org/10.1007/s12033-017-0052-5
  43. Brayley-Morris H, Sorrell A, Revoir AP, Meakin GE, Court DS, Morgan RM. Persistence of DNA from laundered semen stains: Implications for child sex trafficking cases. Forensic Sci Int Genet. 2015;19:165–71. Available from: https://doi.org/10.1016/j.fsigen.2015.07.016
  44. Basyoni HA, Mohamed KM, El-Barrany UM, Rashed LA, Aboubakr HM, Razik HAA. How possible is it to recover semen DNA from laundered cotton and polyester fabrics? Indian J Forensic Med Toxicol. 2020;14:2941–8. Available from: https://doi.org/10.37506/ijfmt.v14i4.12037
  45. Nolan A, Speers SJ, Murakami J, Chapman B. A pilot study: The effects of repeat washing and fabric type on the detection of seminal fluid and spermatozoa. Forensic Sci Int. 2018;289:51–6. Available from: https://doi.org/10.1016/j.forsciint.2018.05.021
  46. Pajnič IZ, Marrubini G, Pogorelc BG, Zupanc T, Previderè C, Fattorini P. On the long-term storage of forensic DNA in water. Forensic Sci Int. 2019;305:110031. Available from: https://doi.org/10.1016/j.forsciint.2019.110031
  47. Alaeddini R, Walsh SJ, Abbas A. Forensic implications of genetic analyses from degraded DNA—A review. Forensic Sci Int Genet. 2009;4(3):148–57. Available from: https://doi.org/10.1016/j.fsigen.2009.09.007
  48. Aloraer D, Hassan N, Albarzinji B, Goodwin W. Collection protocols for the recovery of biological samples. Forensic Sci Int Genet Suppl Ser. 2015;5:e207–e209. Available from: https://doi.org/10.1016/j.fsigss.2015.09.083
  49. Van Oorschot RA, Szkuta B, Meakin GE, Kokshoorn B, Goray M. DNA transfer in forensic science: A review. Forensic Sci Int Genet. 2018;38:140–66. Available from: https://doi.org/10.1016/j.fsigen.2018.10.014
  50. Purps J, Geppert M, Nagy M, Roewer L. Validation of a combined autosomal/Y-chromosomal STR approach for analysing typical biological stains in sexual-assault cases. Forensic Sci Int Genet. 2015;19:238–42. Available from: https://doi.org/10.1016/j.fsigen.2015.08.002
  51. Court DS. The Y chromosome and its use in forensic DNA analysis. Emerg Top Life Sci. 2021;5(3):427–41. Available from: https://doi.org/10.1042/etls20200339
  52. Holt C, Buoncristiani M, Wallin J, Nguyen T, Lazaruk K, Walsh P. Twgdam Validation of Ampf_str•: PCR Amplification Kits for Forensic DNA Casework. J Forensic Sci. 2002;47(1):66–96. Available from: https://doi.org/10.1520/jfs15206j
  53. Cotton E, Allsop R, Guest J, Frazier R, Koumi P, Callow I, et al. Validation of the AMPFlSTR® SGM PlusTM system for use in forensic casework. Forensic Sci Int. 2000;112(2–3):151–61. Available from: https://doi.org/10.1016/s0379-0738(00)00182-1
  54. Ballantyne KN, Goedbloed M, Fang R, Schaap O, Lao O, Wollstein A, et al. Mutability of Y-Chromosomal microsatellites: rates, characteristics, molecular bases, and forensic implications. Am J Hum Genet. 2010;87(3):341–53. Available from: https://doi.org/10.1016/j.ajhg.2010.08.006
  55. Willuweit S, Roewer L. Y chromosome haplotype reference database (YHRD): Update. Forensic Sci Int Genet. 2007;1(2):83–7. Available from: https://doi.org/10.1016/j.fsigen.2007.01.017
  56. Gjertson DW, Brenner CH, Baur MP, Carracedo A, Guidet F, Luque JA, et al. ISFG: Recommendations on biostatistics in paternity testing. Forensic Sci Int Genet. 2007;1(3–4):223–31. Available from: https://doi.org/10.1016/j.fsigen.2007.06.006
  57. Bhoyar L, Mehar P, Chavali K. An overview of DNA degradation and its implications in forensic casework. Egypt J Forensic Sci. 2024;14(1):15. Available from: https://doi.org/10.1186/s41935-024-00389-y
  58. Sibille I, Duverneuil C, De La Grandmaison GL, Guerrouache K, Teissière F, Durigon M, et al. Y-STR DNA amplification as biological evidence in sexually assaulted female victims with no cytological detection of spermatozoa. Forensic Sci Int. 2002;125(2–3):212–6. Available from: https://doi.org/10.1016/s0379-0738(01)00650-8
  59. Guo X, Bayliss P, Damewood M, Varney J, Ma E, Vallecillo B, et al. A noninvasive test to determine paternity in pregnancy. N Engl J Med. 2012;366(18):1743–5. Available from: https://doi.org/10.1056/nejmc1113044
  60. Corach D, Sala A, Penacino G, Iannucci N, Bernardi P, Doretti M, et al. Additional approaches to DNA typing of skeletal remains: The search for “missing” persons killed during the last dictatorship in Argentina. Electrophoresis. 1997;18(9):1608–12. Available from: https://doi.org/10.1002/elps.1150180921
  61. Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, et al. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature. 2003;423(6942):873–6. Available from: https://doi.org/10.1038/nature01723
  62. Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res. 2008;18(5):830–8. Available from: https://doi.org/10.1101/gr.7172008
  63. Tattersall I. Human origins: Out of Africa. Proc Natl Acad Sci U S A. 2009;106(38):16018–21. Available from: https://doi.org/10.1073/pnas.0903207106
  64. Gomes V, Sánchez-Diz P, Amorim A, Carracedo Á, Gusmão L. Digging deeper into East African human Y chromosome lineages. Hum Genet. 2010;127(5):603–13. Available from: https://doi.org/10.1007/s00439-010-0808-5
  65. Cavalli-Sforza LL, Feldman MW. The application of molecular genetic approaches to the study of human evolution. Nat Genet. 2003;33 Suppl:266–75. Available from: https://doi.org/10.1038/ng1113
  66. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45(10):1176–82. Available from: https://doi.org/10.1038/ng.2744
  67. Khan K, Siddiqi MH, Abbas M, Almas M, Idrees M. Forensic applications of Y chromosomal properties. Legal Med (Tokyo). 2017;26:86–91. Available from: https://doi.org/10.1016/j.legalmed.2017.04.002

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?