Abstract

Research Article

The Effect of Humidity on Blood Serum Pattern Formation and Blood Transfer

Kelly P Kearse*

Published: 28 August, 2023 | Volume 7 - Issue 1 | Pages: 040-048.

A detailed knowledge of the drying properties of blood is important for a more complete understanding of the forensic information that may exist at a crime location. Although the effect of relative humidity on the general properties of blood drying has been evaluated, relatively little information exists regarding the alterations of blood serum distribution that may occur during the drying process. Moreover, the influence of humidity on the ability of dried blood drops to transfer from skin to absorbent material has never been studied. The data in the current report show that blood serum pattern formation is distinctly altered by increased humidity in drying drops of blood. In addition, these data document that high humidity conditions were sufficient to remoisten dried blood drops such that they were able to transfer to the absorbent material, with the original bloodstain pattern maintained.

Read Full Article HTML DOI: 10.29328/journal.jfsr.1001048 Cite this Article Read Full Article PDF

Keywords:

Blood; Plasma blister; Serum; Humidity; Transfer

References

  1. Hertaeg MJ, Tabor RF, Routh AF, Garnier G. Pattern formation in drying blood drops. Philos Trans A Math Phys Eng Sci. 2021 Aug 9;379(2203):20200391. doi: 10.1098/rsta.2020.0391. Epub 2021 Jun 21. PMID: 34148412; PMCID: PMC8405133.
  2. Chen R, Zhang L, Zang D, Shen W. Blood drop patterns: Formation and applications. Adv Colloid Interface Sci. 2016 May;231:1-14. doi: 10.1016/j.cis.2016.01.008. Epub 2016 Feb 4. PMID: 26988066.
  3. Brutin D, Sobac B, Loquet B, Sampol J. Pattern formation in drying drops of blood. J Fluid Mecha. 2011; 667: 85-95.
  4. San Pietro D, Steelberg R. A Preliminary Assessment of the Correlation of Drying Time and the Peripheral Rim Thickness of Perimeter Bloodstains. J Forensic Res. 2019; 10: 442-445.
  5. Denniff P, Woodford L, Spooner N. Effect of ambient humidity on the rate at which blood spots dry and the size of the spot produced. Bioanalysis. 2013 Aug;5(15):1863-71. doi: 10.4155/bio.13.137. PMID: 23905860.
  6. Deegan RD. Pattern formation in drying drops. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):475-85. doi: 10.1103/physreve.61.475. PMID: 11046287.
  7. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997; 389: 827–829.
  8. Martusevich AK, Zimin Y, Bochkareva A. Morphology of dried blood serum specimens of viral hepatitis. Hepatitis Mon. 2007; 7: 207–210.
  9. Pozrikidis C. Flipping of an adherent blood platelet over a substrate. J Fluid Mech. 2006; 568: 161-172.
  10. Shabalin VN, Shatokhina SN. Diagnostic markers in the structures of human biological liquids. Singapore Med J. 2007 May;48(5):440-6. PMID: 17453103.
  11. Peschel O, Kunz SN, Rothschild MA, Mützel E. Blood stain pattern analysis. Forensic Sci Med Pathol. 2011 Sep;7(3):257-70. doi: 10.1007/s12024-010-9198-1. Epub 2010 Nov 11. PMID: 21069481.
  12. Ramsthaler F, Schlote J, Wagner C, Fiscina J, Kettner M. The ring phenomenon of diluted blood droplets. Int J Legal Med. 2016 May;130(3):731-6. doi: 10.1007/s00414-015-1304-1. Epub 2015 Dec 30. PMID: 26718842.
  13. Bahmani L, Neysari M, Maleki M. The study of drying and pattern formation of whole human blood drops and the effect of thalassemia and neonatal jaundice on the patterns. Colloids Surf A. 2006; 513: 66–75.
  14. Yakhno TA, Yakhno VG, Sanin AG, Sanina OA, Pelyushenko AS, Egorova NA, Terentiev IG, Smetanina SV, Korochkina OV, Yashukova EV. The informative-capacity phenomenon of drying drops. IEEE Eng Med Biol Mag. 2005 Mar-Apr;24(2):96-104. doi: 10.1109/memb.2005.1411354. PMID: 15825851.
  15. Bou Zeid W, Brutin D. Influence of relative humidity on spreading, pattern formation and adhesion of a drying drop of whole blood. Colloids Surf A. 2013; 430: 1-7.
  16. Chhasatia VH, Joshi AS, Sun Y. Effect of relative humidity on contact angle and particle deposition morphology of an evaporating colloidal drop. Appl Phys Lett. 2010; 97: 231909.
  17. Bou-Zeid W, Brutin D. Effect of relative humidity on the spreading dynamics of sessile drops of blood. Colloids Surf A. 2014; 456: 273–285.
  18. Giorgiutti-Dauphiné F, Pauchard L. Drying drops: Drying drops containing solutes: From hydrodynamical to mechanical instabilities. Eur Phys J E Soft Matter. 2018 Mar 19;41(3):32. doi: 10.1140/epje/i2018-11639-2. PMID: 29546533.
  19. Brutin D, Starov V . Recent advances in droplet wetting and evaporation. Chem Soc Rev. 2018 Jan 22;47(2):558-585. doi: 10.1039/c6cs00902f. PMID: 29090296.
  20. Parsa M, Harmand S, Sefiane K. Mechanisms of pattern formation from dried sessile drops. Adv Colloid Interface Sci. 2018 Apr;254:22-47. doi: 10.1016/j.cis.2018.03.007. Epub 2018 Mar 24. PMID: 29628116.
  21. Kovalchuk NM, Trybala A, Starov VM. Evaporation of sessile droplets. Curr Opinion Colloid Interface Sci. 2014; 19: 336–342.
  22. Larson RG. Transport and deposition patterns in drying sessile droplets. AlChE J. 2014; 60: 1538–1571.
  23. Sobac B, Brutin D. Structural and evaporative evolutions in desiccating sessile drops of blood. Phys Rev E Stat. Nonlinear Soft Matter Phys. 2011; 84: 1-5.
  24. Kenner T. The measurement of blood density and its meaning. Basic Res Cardiol. 1989 Mar-Apr;84(2):111-24. doi: 10.1007/BF01907921. PMID: 2658951.
  25. Rosina J, Kvasnák E, Suta D, Kolárová H, Málek J, Krajci L. Temperature dependence of blood surface tension. Physiol Res. 2007;56 Suppl 1:S93-S98. doi: 10.33549/physiolres.931306. Epub 2007 May 31. PMID: 17552890.
  26. Hertaeg MJ, Tabor RF, Garnier G. Effect of protein adsorption on the radial wicking of blood droplets in paper. J Colloid Interface Sci. 2018 Oct 15;528:116-123. doi: 10.1016/j.jcis.2018.05.037. Epub 2018 May 23. PMID: 29843059.
  27. Goehring L, Clegg WJ, Routh AF. Solidification and ordering during directional drying of a colloidal dispersion. Langmuir. 2010 Jun 15;26(12):9269-75. doi: 10.1021/la100125v. PMID: 20229997.
  28. Farrant J, Woolgar AE. Human red cells under hypertonic conditions; a model system for investigating freezing damage. I. Sodium chloride. Cryobiology. 1972 Feb;9(1):9-15. doi: 10.1016/0011-2240(72)90003-x. PMID: 5059683.
  29. Vodolazskaya IV, Tarasevich YY. The model of drying sessile drop of colloidal solution. Mod Phys Lett B. 2011; 25: 1303–1310.
  30. Thiriet M. The Biology and Mechanics of Blood Flows. Berlin, Germany: Springer. 2008.
  31. Hertaeg MJ, Tabor RF, Berry JD, Garnier G. Radial Wicking of Biological Fluids in Paper. Langmuir. 2020 Jul 21;36(28):8209-8217. doi: 10.1021/acs.langmuir.0c01318. Epub 2020 Jul 7. PMID: 32574068.
  32. Routh AF, Russel WB. Horizontal drying fronts during solvent evaporation from latex films. AlChE J. 1998; 44: 2088–2098.
  33. Laan N, de Bruin KG, Slenter D, Wilhelm J, Jermy M, Bonn D. Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims. Sci Rep. 2015 Jun 22;5:11461. doi: 10.1038/srep11461. PMID: 26099070; PMCID: PMC4476491.
  34. Sant SP, Fairgrieve SI. Exsanguinated blood volume estimation using fractal analysis of digital images. J Forensic Sci. 2012 May;57(3):610-7. doi: 10.1111/j.1556-4029.2012.02056.x. Epub 2012 Feb 6. PMID: 22309183.
  35. Laan N, Bremmer RH, Aalders MC, de Bruin KG. Volume determination of fresh and dried bloodstains by means of optical coherence tomography. J Forensic Sci. 2014 Jan;59(1):34-41. doi: 10.1111/1556-4029.12272. Epub 2013 Oct 10. PMID: 24117600.
  36. De Gennes P, Brochard-Wyart F, Qu´er´e D, Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer Science & Business Media. 2004.
  37. Riddel JP Jr, Aouizerat BE, Miaskowski C, Lillicrap DP. Theories of blood coagulation. J Pediatr Oncol Nurs. 2007 May-Jun;24(3):123-31. doi: 10.1177/1043454206298693. PMID: 17475978.
  38. Kearse KP. Ultraviolet 365 as an Alternative Light Source for Detection of Blood Serum. J Forensic Sci. 2020 Sep;65(5):1716-1721. doi: 10.1111/1556-4029.14439. Epub 2020 Apr 28. PMID: 32343369; PMCID: PMC7496641.
  39. Kearse KP. Environmental influence on blood serum detection using ultraviolet. J Forensic Sci Res. 2021; 5: 030-036.
  40. Kearse, Kelly P. Visualization of Plasma and Serum Pattern Formation in Drying Drops of Blood. ARC Journal of Forensic Science. 2022; 1: 1-5.

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?