Abstract

Research Article

Poly-dopamine-Beta-Cyclodextrin Modified Glassy Carbon Electrode as a Sensor for the Voltammetric Detection of L-Tryptophan at Physiological pH

Mohammad Hasanzadeh*, Nasrin Shadjou, Sattar Sadeghi, Ahad Mokhtarzadeh and Ayub karimzadeh

Published: 09 January, 2017 | Volume 1 - Issue 1 | Pages: 001-009

The main purpose of this report was to develop application of poly-dopamine-beta-cyclodextrin modified glassy carbon electrode (PDA-β-CD-GCE) towards electrooxidation and determination of L-Tryptophan (L-Trp) and also the evaluation its kinetic parameters. In continuation of our efforts to use PDA-β-CD-GCE for amino acids detection, our objective in the present work was to expand application of this sensor for the determination of L-Trp which is very sensitive.

Read Full Article HTML DOI: 10.29328/journal.jfsr.1001001 Cite this Article Read Full Article PDF

Keywords:

Polymeric composites; Electrodeposition; Interfaces; Oxidation; Polydopamine; L-Tryptophan

References

  1. Wang H, Cui H, Zhang A, Liu R. Adsorptive stripping voltammetric determination of tryptophan at an electrochemically pre-treated carbon-paste electrode with solid paraffin as a binder. Anal Commun. 1996; 33: 275-277. Ref.: https://goo.gl/PpUEw3
  2. Ensafi AA, Maleh HK, Mallakpour S. Simultaneous Determination of Ascorbic Acid, Acetaminophen, and Tryptophan by Square Wave Voltammetry Using N‐(3, 4‐Dihydroxyphenethyl)‐3, 5‐Dinitrobenzamide‐Modified Carbon Nanotubes Paste Electrode. Electroanalysis. 2012; 24: 666-675. Ref.: https://goo.gl/M9yyYv
  3. Kia M, Islamnezhad A, Shariati S, Biparva P. Preparation of voltammetric biosensor for tryptophan using multi-walled carbon nanotubes. Korean J Chem Eng. 2011; 28: 2064-2068. Ref.: https://goo.gl/rNfJTy
  4. Li C, Ya Y, Zhan G. Electrochemical investigation of tryptophan at gold nanoparticles modified electrode in the presence of sodium dodecylbenzene sulfonate. Colloids Surf B. 2010; 76: 340-345. Ref.: https://goo.gl/ZD48qj
  5. Raoof JB, Ojani R, Baghayeri M. Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode. Sens. Actuat B. 2009; 143: 261-269. Ref.: https://goo.gl/Pfz8Lr
  6. Li W, Li C, Kuang Y, Deng P, Zhang S, et al. A carbon paste electrode modified with a cobalt(II) coordination polymer for the direct voltammetric determination of tryptophan. Microchim Acta. 2012; 176: 455-461. Ref.: https://goo.gl/hSSSAL
  7. Mirrahimi F, Taher MA, Beitollahi H, Hosseinzadeh R. Electrocatalytic and selective determination of d-penicillamine in the presence of tryptophan using a benzoylferrocene-modified carbon nanotube paste electrode. Appl Organomet Chem. 2012; 26: 194-198. Ref.: https://goo.gl/tQz0jr
  8. Goyal RN, Bishnoi S, Chasta H, Aziz MA, Oyama M. Effect of surface modification of indium tin oxide by nanoparticles on the electrochemical determination of tryptophan. Talanta. 2011; 85: 2626-2631. Ref.: https://goo.gl/rdkoaM
  9. Prabhu P, Babu RS, Narayanan SS. Electrocatalytic oxidation of L-tryptophan using copper hexacyanoferrate film modified gold nanoparticle graphite-wax electrode. Colloids Surf B. 2011; 87: 103-108. Ref.: https://goo.gl/AeQbQ2
  10. Fan Y, Liu JH, Lu HT, Zhang Q. Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Microchim Acta. 2011; 173: 241-247. Ref.: https://goo.gl/GI8pYy
  11. Shahrokhian S, Bayat M. Pyrolytic graphite electrode modified with a thin film of a graphite/diamond nano-mixture for highly sensitive voltammetric determination of tryptophan and 5-hydroxytryptophan. Microchim Acta. 2011; 174: 361-366. Ref.: https://goo.gl/C0Lt9P
  12. Akhgar MR, Salari M, Zamani H. Simultaneous determination of levodopa, NADH, and tryptophan using carbon paste electrode modified with carbon nanotubes and ferrocenedicarboxylic acid. J Solid State Electrochem. 2011; 15: 845-853. Ref.: https://goo.gl/iCliL7
  13. Deo RP, Lawrence NS, Wang J. Electrochemical detection of amino acids at carbon nanotube and nickel-carbon nanotube modified electrodes. Analyst. 2004; 129: 1076-1081. Ref.: https://goo.gl/a7k2O1
  14. Dong S, Zhang S, Chi L, He P, Wang Q, et al. Electrochemical behaviors of amino acids at multiwall carbon nanotubes and Cu2O modified carbon paste electrode. Anal Biochem. 2008; 381: 199-204. Ref.: https://goo.gl/MjGRGA
  15. Liu X, Luo L, Ding Y, Kang Z, Ye D. Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry. 2012; 86: 38-45. Ref.: https://goo.gl/4rYGyG
  16. MacDonald SM, Roscoe SG. Electrochemical oxidation reactions of tyrosine, tryptophan and related dipeptides. Electrochim Acta. 1997; 42: 1189-1200. Ref.: https://goo.gl/ecL64l
  17. Ye D, Luo L, Ding Y, Liu B, Liu X. Fabrication of Co3O4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Analyst. 2012; 137: 2840-2845. Ref.: https://goo.gl/Qa4a3L
  18. Nan CG, Feng ZZ, Li WX, Ping DJ, Qin CH. Electrochemical behavior of tryptophan and its derivatives at a glassy carbon electrode modified with hemin. Anal Chim Acta. 2002; 452: 245-254. Ref.: https://goo.gl/03JFdu
  19. Guo Y, Guo S, Fang Y, Dong S. Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan. Electrochim Acta. 2010; 55: 3927-3931. Ref.: https://goo.gl/6AITnB
  20. Hasanzadeh M, Sadeghi S, Bageri L, Mokhtarzadeh A, Karimzadeh A, et al. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH. Materials Science and Engineering: C. 2016; 69: 343-357. Ref.: https://goo.gl/ZQLfSR
  21. Xu J, Shang F, Luong JH, Razeeb KM, Glennon JD. Direct electrochemistry of horseradish peroxidase immobilized on a monolayer modified nanowire array electrode. Biosens Bioelectron. 2010; 25: 1313-1318. Ref.: https://goo.gl/mC7XN0
  22. Kissinger P, Heineman WR. Laboratory Techniques in Electroanalytical Chemistry, 2nd edition. CRC Press. 1996; 224. Ref.: https://goo.gl/R8aLMx
  23. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications, 2nd edition. John Wiley & Sons. 2001; 236, 503 and 709. Ref.: https://goo.gl/IHWNCG
  24. Brett CM, Brett AO. Electrochemistry: principles, methods and applications. Oxford University Press. 1993; 427. Ref.: https://goo.gl/KJGhjg
  25. Pariente F, Lorenzo E, Tobalina F, Abruna H D. Aldehyde Biosensor Based on the Determination of NADH Enzymically Generated by Aldehyde Dehydrogenase. Anal. Chem. 1995; 67: 3936-3944. Ref.: https://goo.gl/GmreuX
  26. Harrison JA, Khan ZA. The oxidation of hydrazine on platinum in acid solution. J Electroanal Chem Interfacial Electrochem. 1970; 28: 131-138. Ref.: https://goo.gl/MIMhIr
  27. Liu X, Luo L, Ding Y, Ye D. Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of L-tryptophan. Bioelectrochemistry. 2011; 82: 38-45. Ref.: https://goo.gl/zTPOK1
  28. Xu J, Yuan Y, Li W, Deng P, Deng J. Carbon paste electrode modified with a binuclear manganese complex as a sensitive voltammetric sensor for tryptophan. Microchim Acta. 2011; 174: 239-245. Ref.: https://goo.gl/RztqNx
  29. Tang X, Liu Y, Hou H, You T. Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Talanta. 2010; 80: 2182-2186. Ref.: https://goo.gl/U1lRjw
  30. Jiang Q, Sun W, Jiao K. Electrochemical behavior and determination of L-tryptophan on carbon ionic liquid electrode. J Anal Chem. 2010; 65: 648-651. Ref.: https://goo.gl/F95aWJ
  31. Xu M, Ma M, Ma Y. Electrochemical determination of tryptophan based on silicon dioxide nanopartilces modified carbon paste electrode. Russ J Electrochem. 2012; 48: 489-494. Ref.: https://goo.gl/nRtCK5
  32. Güney S, Yıldız G. Determination of tryptophan using electrode modified with poly(9-aminoacridine) functionalized multi-walled carbon nanotubes. Electrochim Acta. 2011; 57: 290-296. Ref.: https://goo.gl/UL4S2P
  33. Shahrokhian S, Fotouhi L. Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan. Sens Actuat B. 2007; 123: 942-949. Ref.: https://goo.gl/kns7s3
  34. Mao S, Li W, Long Y, Tu Y, Deng A. Sensitive electrochemical sensor of tryptophan based on Ag@C core-shell nanocomposite modified glassy carbon electrode. Anal Chim Acta. 2012; 738: 35-40. Ref.: https://goo.gl/93j5YD
  35. Deng KQ, Zhou JH, Li XF. Direct electrochemical reduction of graphene oxide and its application to determination of L-tryptophan and L-tyrosine. Colloids Surf B. 2013; 101: 183-188. Ref.: https://goo.gl/t8eDEe
  36. Szunerits S, Coffinier Y, Galopin E, Brenner J, Boukherroub R. Electrochem Commun. 2010; 12: 438-441. Ref.: https://goo.gl/GNdG80
  37. Safavi A, Momeni S. Electrocatalytic Oxidation of Tryptophan at Gold Nanoparticle-Modified Carbon Ionic Liquid Electrode. Electroanalysis. 2010; 22: 2848-2855. : https://goo.gl/FsEzql

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?