

Review Article

A Review on Importance of Fungi and Main Role in Criminal Investigation

Suman Narsingh Singh^{1*} and Umema Ahmed²

¹MSc (Final year), Department of Forensic Science, Vivekananda Global University, Jaipur, Rajasthan, India

²Associate Professor & Head, Department of Forensic Science, Vivekananda Global University, Jaipur, Rajasthan, India

Abstract

Fungus is a gathering of eukaryotic life forms that include microorganisms. As of late, the fungus has assumed a part in criminological science and has been utilized in criminal examination as a source of information. As organisms show both sexual and agamic reproduction in their life cycle, they are utilized as a scattering specialist. The investigation of growths is called mycology. Legal mycology is the part of science that portrays the types of growth. Utilizing the limit of the study of fungus distinguishing proof, which step by step opens its place as a device to recognizing tests and investigations in mycology, showed that certain chemoecological gatherings of organisms can go about as over the ground grave markers, in contrast to plants. Organisms can likewise develop on, for instance, stone, block, tiles, wood, and so on. The principal agent tracked down the primary key of contagious gathering in determining the time of body passing. The scientific mycology structures the contagious local area, they give the date after death and post entombment spans. The microbial clock has been created utilizing society-free high-throughput sequencing in a model framework. The extension to issues worried about common examination where there are clinical ramifications. Organisms were cultured from the mucosal swabs, skin scratching, hair, and lung biopsies. The organisms exist in numerous climates. The parasitic spores are created in huge amounts and spread without any problem. Which can frequently track down the person in question. (Garments, hair, or skin). As a follow-up, proof is searched for, and shape spores are tracked down in paleontological readiness. Spores are utilized for ordered qualities and the identification of species-level. The environmental and palynological data showed proof of a connection between the suspect and where the body was kept. During the examination of the parasite, we can recognize the reason for death, the season of death, find a covered carcass, and so on. As per the going timeframe, specific growth shows specific qualities at specific climate.

More Information

*Address for correspondence: Suman Narsingh Singh, MSc (Final year), Department of Forensic Science, Vivekananda Global University, Jaipur, Rajasthan, India, E-mail: singhangle1234@gmail.com

Submitted: July 03, 2024 Approved: September 29, 2025 Published: October 01, 2025

How to cite this article: Singh SN, Ahmed U. A Review on Importance of Fungi and Main Role in Criminal Investigation. J Forensic Sci Res. 2025; 9(2): 193-199. Available from:

https://dx.doi.org/10.29328/journal.jfsr.1001102

Copyright license: © 2025 Singh SN, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Keywords: Chemo ecology; Palynology; Mold spores; Ecology; Mycology; Criminal investigation

Introduction

Fungi, a diverse kingdom of organisms distinct from plants, animals, and bacteria, play a critical yet often underexplored role in forensic science. They are ubiquitous in nature, inhabiting a wide range of environments, from soil and water to living and decaying organic matter. This diversity and adaptability make fungi particularly useful in forensic investigations, where they can provide unique insights into various aspects of a crime scene. Fungus is a gathering of eukaryotic life forms that include microorganisms. As of late, the organism has been used in criminological science and

utilized in criminal examination as a source of information. [1] As growth shows both sexual and agamic beginning in the life cycle, and is utilized as a scattering specialist [2]. The primary utilization of growths as proof was confined to cases related to harmful or psychotropic species. The investigation of growths is called mycology. Which has been framed utilizing the limit of study of organism ID [3,4]. The contextual analyses in mycology showed that certain chemoecological gatherings of parasites can serve as above-ground grave markers, in contrast to plants. Fungus can likewise develop on, for instance, stone, block, tiles, wood, and so on. Forensic mycology is a specialized subject of forensic science that studies and applies

fungus analysis to legal investigations. In their seminal work, Van de Voorde and Van Bijck investigate the potential of fungi as useful indicators in forensic situations, particularly in measuring post-mortem intervals (PMI) and comprehending decomposition processes. Despite the acknowledged importance of forensic entomology and bacteriology, forensic mycology is little explored, presenting a novel and potential route for enhancing forensic methods. Fungi are ubiquitous organisms that play an important part in the breakdown of organic substances. Their presence and activity on rotting animal tissues can reveal important information about the time and circumstances of death. Van de Voorde and Van Bijck's study focuses on the isolation and characterization of fungal species from deteriorated animal tissues to build trustworthy forensic tools. This entails identifying distinct fungal species linked with various stages of decomposition and comprehending the environmental conditions that influence fungal colonization. The primary specialist they tracked down the fundamental key of parasitic gathering in determining the hour of carcass passing. The measurable mycology shapes the parasitic local area, they give the date after death and post entombment spans. As follows, proof is searched for, and shape spores are tracked down in paleontological planning. Spores are utilized for ordered qualities and recognizable proof of the species level. Fungi are ubiquitous creatures that help decompose organic waste, including animal and human remains. Their colonization patterns, species diversity, and development rates are impacted by a variety of environmental circumstances, making them useful markers of the timing and conditions of death. Fungi, as decomposers, develop during various stages of decomposition, and their succession on a body can provide insights into the PMI, supplementing data from other biological markers such as insects and bacteria.

[1] We additionally figure out that the going timeframe specific organism shows specific qualities at a specific climate. Research is progressively being completed overall to involve mycology as a wellspring of extra data for legal cases [5,6]. It merits featuring the need to get information on genuine cases with field trial and error, which at present ought to be the primary goal of research groups around here. The consequence of the work of the specialists working together will, without a doubt, transform scientific mycology into a strong and deeply grounded instrument that settles complex criminal cases around the world [7]. Forensic science has typically employed biological evidence to recreate crime scenes and determine post-mortem intervals (PMI). Fungi, an often-overlooked component of the decomposer ecosystem, have considerable potential as forensic evidence. The study of fungus in forensic contexts, known as forensic mycology, is emerging as an important field of study with the potential to improve the precision and reliability of forensic studies [8-20].

Fungus as Evidence and Its Importance

Growths likewise serve as follow-up proof (these are the

items or substances that serve as proof when a contact is made between the suspect, casualty, or the crime location). In contrast to plants, organisms (including lichen parasites) may develop on items like stone, block, tiles, clearing stones, wooden articles, lather, plastics, elastic, and materials, as follows: Sections of lichens and mouldy articles will be isolated and will be engaged with things that are crucial in a criminal examination [21]. The value of fungi as forensic evidence stems from their distinct properties and the extensive information they provide. Fungal spores and hyphae can survive in a variety of conditions, even ones in which other biological evidence degrades more quickly. Fungi can also be used to determine the geographical origin of a body or object, as some species are indigenous to specific places. This biogeographical information might be useful in forensic investigations by establishing links between locales, suspects, and victims [22-24]. Despite its potential, forensic mycology confronts various hurdles, including the necessity for standardized techniques and a complete database of fungal species involved in decomposition. Research efforts are ongoing to fill these gaps, to establish fungi as a reliable and routine component of forensic investigations [25]. Fungus as a pointer for deciding time since death (post mortem stretch), although people can have contagious contaminations, yet the growths that are often found developing on and in bodies are those that are not commonly ready to colonize living tissue [12,14,16]. The presence and growth stages of specific fungal species on decomposing tissues can help estimate the time since death. Each species has a particular window of appearance and growth, providing a chronological marker for investigators. A cadaver covered straightforwardly in soil regularly gives indications of wet deterioration with skin slippage and organism growth. Janeway et al. expressed that dirt parasites may be found on the body surface after a significant period of disintegration, and referenced that' moulds begin to show up on the outer layer of the body' in the first week after death. It is accepted that organisms could help in deciding the hour of death, given the temperature information concerning the growth that is found is accessible [25-27]. The unwavering quality of any appraisals will depend on the precision of the identification of the growth, the capacity strategies for the body, and the accessibility of information on the temperature and humidity at the site.

Developments as a marker to track down bodies

The use of fungi and mushrooms as identifiers to locate bodies is a novel and promising strategy in forensic research. This methodology uses fungi's distinct ecological roles and successional patterns during the decomposition process to provide vital information about the location and time of death. The development of fungi and mushrooms as forensic markers entails several crucial aspects. Fungi play an important part in the breakdown of organic matter, including animal and human remains. As the main decomposers, they degrade complex organic compounds, allowing nutrients to cycle

more easily. Different fungal species invade decaying tissues at different phases, depending on environmental conditions such as temperature, humidity, and substrate availability [4]. A couple of mushrooms will not make sporophores until 1-2 years of being upset; anyway, it is a characteristic of the upset ground. Developments are copied truly and abiogenetically and, in this way, they convey endless spores with the end goal of dispersal. Although not all of the development creature classes don't make spores, the species that produce spores can have brand-name morphologies that work with their distinctive verification. A couple of parasites have bound transports, organic essentials, and produce spores right at express time(s) of year. In this manner, their presence may be important in associating an individual or thing with a district [7,8].

Organisms utilized as a weapon in Natural fighting

In forensic contexts, the use of organisms such as fungi as weapons refers to the deliberate use of pathogenic fungi to harm individuals or populations. This notion, known as bioterrorism, includes using fungi because of their particular properties, such as pathogenicity, resistance, and ability to create poisons [9]. Understanding the forensic implications of such applications is critical for recognizing, avoiding, and responding to security concerns. In forensic contexts, the use of organisms such as fungi as weapons refers to the deliberate use of pathogenic fungi to harm individuals or populations [10]. This notion, known as bioterrorism, includes using fungi because of their particular properties, such as pathogenicity, resistance, and ability to create poisons. Understanding the forensic implications of such applications is critical for recognizing, avoiding, and responding to security concerns. Various kinds of developments, for instance, shape and mushrooms can make harms and the movement of most of them is long stretch (for example, they are malignant growth causing specialists) and some can be refined in Tanks (block that goes probably as a light source when it is put down) [15,16] in enormous totals and produce speedier acting substances that have potential as natural weapons. Infectious parasites of plants can be used as normal battling weapons, as they can be made to crush yields correspondingly, and they are used for weed control [17]. Many fungi can cause serious infections in humans, animals, and plants. Human pathogens like Aspergillus, Histoplasma, and Coccidioides can lead to severe respiratory and systemic diseases. Fungi can produce spores that are extremely resistant to environmental stressors, making them ideal for dispersal and survival in harsh environments. Some fungus creates mycotoxins, which are highly toxic substances that can contaminate food sources and cause illness or death [18].

Fungal Growth during Cadaver Decomposition

Cadaver decomposition is a universal phenomenon that plays an integral role in ecosystem energy transformation and nutrient cycling [19]. The complex process of decomposition of human or other mammalian cadavers is intimately affected by biotic (bacteria, fungi, arthropods, nematodes, etc.) and abiotic (weather, climate, temperature, humidity, etc.) factors. As a pool of detritus, cadavers are a much more concentrated source of nutrients (low carbon to nitrogen ratio, high water content) than plant litter [20]. Without the action of microbes, chemical decomposition would proceed at an extremely slow pace, leading to the formation of reservoirs of biochemical waste [21]. These cadaver-associated microbes are part of the necrobiome, which is derived from the microbial communities that inhabited the live host [22] and the environment where the cadaver falls. Previous studies have shown that postmortem bacteria are derived primarily from the soil and significantly impact the rate at which cadavers decompose, while the key decomposers are ubiquitous in low abundance. Identifying the microflora involved in cadaver decomposition can provide a detailed understanding of how the biological community changes over time [23]. Although many studies have described spatial and temporal variation in bacterial communities during decomposition, the understanding of the succession pattern of post-putrefaction mycoflora remains limited. Fungi can colonize decomposed bodies, forming distinctive mildew spots, ultimately converting bodies into moldy cadavers at the dry stage of decomposition [24-34]. Heavily decomposed cadavers, in particular those that are highly mummified, often present visible fungal growth. Artificial cultivation has allowed for the morphological identification of the fungi that tend to colonize cadavers.

Taphonomy of Mycota Fungi in Scientific Forensic

The study of taphonomy depended on the reason that data concerning covered remains might be accumulated through field and research facility-based examinations of the circumstances in which they are protected [35]. Measurable taphonomy intends to comprehend the cycles of disintegration and the variables impacting them while assessing postmortem stretch (PMI) as well as cause and manner of death [36]. This should be done inside the limitations forced by the general set of laws. To achieve this, legal taphonomy has integrated numerous strategies from a great many disciplines. Fields like antiquarianism [37], entomology [38], soil science, soil microbial science, and organic science have been utilized to find, recover, and dissect furtive graves. These fungi are known as smelling salts organisms [39] and post-festering growths. To use the fruiting smelling salts organisms and post-rot growths as a device for the assessment of PBI, understanding their fruiting way of behaving and physiology is fundamental. Smelling salts and post-festering parasites go through a "progression" of fruiting where one bunch of fungi is subsequently supplanted by another. This progression has been isolated into right on time and late stages [40]. It is for the most part acknowledged that maggots are "specialists" of deterioration, perhaps showing up on the outer layer of a dead body. Most of the work alluding to organisms in the entombment climate is concerned about the alteration

of hair, bone, and related materials like apparel. Smelling salts and post-rottenness fungi address normally occurring peculiarities that can serve as noticeable grave markers in timberland biological systems.

Developments as Psychotropic Unsafe **Substances**

In forensic science, the creation and investigation of fungi as psychotropic and dangerous substances is centered on their abuse potential and the health risks they pose. This field of study focuses on the identification, detection, and analysis of psychotropic fungi, also known as "magic mushrooms," as well as hazardous fungi, which can cause serious poisoning or death [41]. Here, we'll go over these details in depth, emphasizing their forensic significance. Species possessing psychoactive chemicals, such as psilocybin and psilocin, have received attention due to both their historic applications in diverse cultures and their potential for abuse. Common psychoactive fungi include species from the *Psilocybe, Panaeolus, Gymnopilus, and Amanita genera. [42] To reliably identify these species, forensic mycologists use visual traits as well as molecular approaches like DNA sequencing. One or two parasitic creature species are represented as the justification for deadly poisonings. An arrangement of mushroom clusters is amazingly harmful and can cause death if treatment isn't gotten soon enough. It is an immediate consequence of this reality that they have been exploited by liable gatherings sometimes [43]. For example, some neurotropic Psilocybin species can be relevant in criminological conditions isolated from their regular land districts as they are exchanged from Central America into Europe. Some can be created inside as well as outside [44]. Psychoactive chemicals in fungal samples are detected and quantified using techniques such as gas chromatography-mass spectrometry (GC-MS), highperformance liquid chromatography (HPLC), and liquid chromatography-mass spectrometry (LC-MS). Include a diverse group of organisms capable of inflicting serious poisoning or death upon intake. The forensic analysis of these fungi aims to uncover cases of accidental or purposeful poisoning [45].

Developments fungi as a marker for Time of statement

The use of fungi as markers to estimate the time of death (also known as the post-mortem interval or PMI) in forensic investigations is a growing field. This method uses the regular patterns of fungal colonization and succession on decomposing remains to generate more precise PMI estimates. In this section, we will look at the potential and development of fungi as forensic markers, as well as the methodology used, problems, and future directions. Fungi play an important role in the breakdown of organic material. Different fungal species colonize remains at different stages of decomposition, depending on environmental factors such as temperature, humidity, and the presence of other

decomposers. Forensic scientists can learn more about the PMI by analyzing these successional patterns [46]. Uncovered bones can be colonized by developments like structure under incorporating conditions. Lichen conditions of, explicitly, Caloplaca and Lecanoraceae species can make it expected that the bone is uncovered for most years in adequately splendid conditions. A good indication of the least transparent seasons of transparency is given by settlement estimation [47].

Association between Criminological Mycology and **Toxicology**

The essential significance of mycological confirmation with respect to toxicology focuses on mycoses (parasitic diseases) and mycotoxins [48]. These experts can be of high criminological worth with respect to perceiving environmental underpinnings of suspects/setbacks, matching between scenes/instruments/objects, as well as spreading out contributory factors before passing. Ramirez et al. (2012) demonstrated that a couple of microorganisms can move from the mucosal surface to various body tissues and fluids and lead to microbiological debasement of prescriptions and harmful substances impacting their obsessions or metabolic profiles in the body [49].

Environmental factors affecting the growth of

Environmental factors can significantly influence the growth of fungi on animal tissues in a forensic context. Fungi exhibit specific temperature ranges for growth. For example, mesophilic fungi grow best at moderate temperatures (20-30°C), while thermophilic fungi prefer higher temperatures (above 40°C). Forensic investigations may involve varying temperatures depending on the climate, season, and location of the crime scene, which can impact fungal growth rates [50]. Moisture content in the environment plays a critical role in fungal growth. Higher humidity levels promote fungal proliferation, while dry conditions inhibit growth. The moisture content of the animal tissue itself, as well as the surrounding environment, can influence fungal colonization and activity. Fungi have specific pH requirements for growth. Some species thrive in acidic environments, while others prefer neutral or alkaline conditions [51]. The pH of the animal tissue and the surrounding substrate can impact which fungi colonize the tissue and how quickly they grow. Fungi require various nutrients for growth, including carbon, nitrogen, and minerals. The composition of the animal tissue and the surrounding environment can affect nutrient availability, thus influencing fungal colonization and growth rates. Like most aerobic organisms, fungi require oxygen for growth. Oxygen availability in the environment can impact fungal colonization and activity. For example, anaerobic conditions may inhibit the growth of certain fungi, while others may adapt to low-oxygen environments. The presence of competing microorganisms, such as bacteria or other fungi, can influence fungal growth on animal tissues [52].

Cases Settled by Organisms

1. Fungal spores were utilized in an assault case in the southern U.K.

In view of the information on biotic and abiotic prerequisites for parasites to repeat, it is realized that by finding fungal remains or spores on the proof, one could make general conclusions about the climate in which the proof was found. For this situation, mycological and plant follow proof - spores and dust - were taken to distinguish the area of wrongdoing. During this examination, a lady guaranteed that she was assaulted by her life partner. He strolled her to a wooded region between two streets. The sweetheart contended that they had consensual sexual relations on the turf of a recreation area, which was situated around 200 m from the potential crime location. Apparel and footwear were gathered from both the suspect and the person in question, and they were inspected and examined. Besides, the two destinations - the lush region and the recreation area - were examined and dissected. The two locales had altogether different profiles to the extent that dust, spores, and prevailing plant species are concerned, thus matching the profiles of the apparel and footwear proof was conceivable. A few fungal animal types, e.g., Epicoccum nigrum and Melanospora sp., were recognized in the example obtained from the recreation area; however, they were scarcely addressed on the apparel. Then again, numerous fungal17 species, for example, Clasterosporium flexum and Endophragmiella fagicola, were found on the attire of both the person in question and the suspect, which likewise showed up in the examples gathered from the potential assault site [7].

Taking everything into account, the forensic proof, as well as the other palynomorph examinations, had the option to show that the movement happened not where the suspect said it, but where the casualty had shown it. This presented a persuasive defense to the adjudicator and jury that the casualty was assaulted, and the suspect was condemned to prison.

2. Fungal colony size determines the minimum time since death

Fungi with filamentous growth can grow in colonies under favorable conditions. These circular colonies have recorded growth rates in artificial media that are available with species descriptions. This growth rate was used in a case in England where police had found a mutilated human body. The body was found with no blood around it, suggesting that it had been moved from one location to where it was eventually found. Officers found small colonies of non-sporulating Mucor hiemalis on the abdomen. Based on the sizes of the colonies, it was indicated that the growth was no more than 1-2 days old; however, this particular fungus is unable to grow on fresh skin, and it does not appear until at least a week after death occurs on human bodies. This had shown that this body was at least 8-9 days old. Moreover, after looking at the colonies

under a microscope, the good condition of the fungal mycelium (collection of hyphae) suggested that the body was not moved since the mold started to grow on it, because these mycelia are very fragile and would have been broken into pieces in case the body was moved after they had developed [8].

In another case from West Yorkshire, England, swabs were taken from a female's body. She was found in her apartment. The police took samples from the grey and bluish green fungal growths. After 18, the swab was taken, and the colony sizes were measured for the bluish green colonies (the gray colonies were too widely spread to measure them). The samples were identified as Penicillium sp. and Mucor sp. After the genus level identification, these samples were grown in artificial media by a mycologist at the temperature at which the body was found, as well as at room temperature. This experiment has determined that the body had been dead at least three to four weeks before the measurements were taken on the body. This piece of evidence later helped in sentencing the suspect to life in prison [9].

Lawful technique for Developments

Creating, collecting, or having the developments goes against the guidelines, with the exception that any work at preparation (like cutting, drying, powdering, freezing, and packaging) renders it as a Class A controlled medicine. Conspicuous verification and linkage of shape species with a solitary's clinical issues, food judgment, or household mischief could be critical in a real case.

While mycology has been displayed to give significant legal evidence in various ways and, from time to time, has exhibited fundamental in getting convictions, it is at this point only sometimes used. The standard legitimization for this is a shortfall of care among investigators and investigating authorities, which might potentially commit tremendous responsibilities. In a couple of the cases in which we have been involved, it was the perception of authorities that there was an infection. The review endeavored to cover literature and casework. This follow-up contribution draws attention to work carried out since that time, and a few studies of which we were previously unaware. We also extend the scope to issues concerned with civil investigations where there are medical implications [8,9].

Discussion

The study based on three unique organisms reliably ruled societies developed from various examples taken from everybody. In light of morphological perceptions, atomic rDNA succession information, and phylogenetic examinations, two parasites were distinguished as species (Aureobasidium melanogenic and Didymella glomerata) and one growth was recognized to the genus level (Alternaria). Fungal spores and mycelium can be transferred between individuals, objects, and environments. Analysing these transfers can establish connections between suspects, victims, and crime scenes,

similar to the use of pollen or other trace evidence. These outcomes will add to the comprehension of the role that growth could play in late-stage decay and the drawn-out postmortem period. [53,54] Fungi exist in many environments, in air, bathrooms of houses, on wet floors, grounds, showers, dirty, wet laundry, air conditioners, humidifiers, garbage bins, dish racks, carpets, and in the dark. They aim to review literature concerning fungal growth on corpses. In the study, they presented a case whose dead body was covered with fungal plagues during the postmortem period [46-48]. The study aims to research the presence of parasites during three human deterioration stages: swelling, festering, and skeletonization. These discoveries empower following the profile of contagious networks of human corpses, interestingly. Notwithstanding, significantly more research will be important to foster this new fragment of mycology and to empower its standard use in medical science [51]. To investigate which fungi can be found during forensic autopsies, a PubMed literature review was done on fungal growth on decomposed human bodies. [10,11,21]. The work has been critically evaluated, with particular attention to its evidential value and suitability for presentation in a court of law. The situations where mycology might assist an investigation are summarized, and issues relating to the further development of the subject are presented [10-13]. With the advent of advanced molecular techniques, such as genomic sequencing and bioinformatics, the identification and characterization of fungi have become more precise and efficient. These technologies allow for the development of comprehensive fungal databases and the creation of microbial signatures, enhancing the ability to use fungi as forensic tools.

Conclusion

Fungal development is incidentally seen on decayed dead bodies. In spite of the fact that it has been acknowledged that contagious examinations are helpful in a few medical settings, for example, providing evidence, assessing time since death, discovering the time of death, and identifying decomposed carcasses, parasitic investigations have not been widely utilized in that context to date. The chance of helpfulness of examining growth disengaged from the corpus in measurable settings. Legal mycology isn't yet broadly rehearsed in criminological settings; however, we added contemplations about future possibilities. While the potential applications of fungi in forensic science are vast, several challenges remain. The complexity of fungal identification, the need for specialized training, and the development of standardized methods are critical areas for future research and development. Additionally, building robust databases and improving the integration of mycological data into forensic investigations will be essential for maximizing the utility of fungi in forensics.

Author's Declaration

I, Suman Narsingh Singh, hereby certify that I am the sole author of this Review paper and that no part of this Review

paper has been published or submitted for publication. I certify that, to the best of my knowledge, my Review paper does not infringe upon anyone's copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my Review paper, published or otherwise, are fully acknowledged in accordance with the standard referencing practices.

I declare that this is a true copy of my Review paper, including any final revisions, as approved by my supervisor, and that this Review paper has not been submitted for a higher degree to any other University or Institution.

References

- Carter DO, Tibbett M. Taphonomic mycota: fungi with forensic potential. J Forensic Sci. 2003;48(1):168–171. PubMed
- Ascher J. Sequential extraction and genetic fingerprinting of a forest soil metagenome. Appl Soil Ecol. 2009;41(3):181–190. doi:10.1016/j. apsoil.2009.03.005
- Izzo AD. Hybridization of an ITS-based macroarray with ITS community probes for characterization of complex communities of fungi and fungal-like protists. Mycol Res. 2009;113(2):219–237. doi:10.1016/j. mycres.2008.11.020
- Ishii K, Hitosugi M, Kido M, Yaguchi T, Nishimura K, Hosoya T. Analysis of fungi detected in human cadavers. Leg Med (Tokyo). 2006;8(3):156–162. doi:10.1016/j.legalmed.2005.12.006
- Menezes RG. Forensic mycology. Leg Med (Tokyo). 2007;9(5):298–302. doi:10.1016/j.legalmed.2007.04.002
- Ishii K, Hitosugi M, Yaguchi T, Tokudome S. The importance of forensic mycology. Leg Med (Tokyo). 2007;9(5):303–307. doi:10.1016/j. legalmed.2007.04.002
- Menezes RG, Kanchan T, Lobo SW, Jain A, Bhat NB, Rao NG. Cadaveric fungi: not yet an established forensic tool. J Forensic Leg Med. 2008;15(1):27–29. doi:10.1016/j.jflm.2007.02.001
- Hawksworth DL, Wiltshire PEJ. Forensic mycology: current perspectives.
 Res Rep Forensic Med Sci. 2015;5:75–83. doi:10.2147/RRFMS.S83169
- Hawksworth DL, Wiltshire PEJ. Forensic mycology: the use of fungi in criminal investigations. Forensic Sci Int. 2011;206(1–3):1–11. doi:10.1016/j. forsciint.2010.06.012
- Sagara N. Occurrence of Laccaria proxima in the grave sites of cats. Trans Mycol Soc Jpn. 1981;22:271–275.
- 11. Fukiaru T, Osaku K, Iguchi K, Asada M. Occurrence of ammonia fungi on the forest ground after
- Hitosugi M, Ishii K, Yaguchi T, Chigusa Y, Kurosu A, Kido M, Nagai T. Fungi can be a useful forensic tool. Leg Med (Tokyo). 2006;8(4):240–242. doi:10.1016/j.legalmed.2006.04.005
- R.G. Menezes Kanchan T, Lobo SW, Jain A, Bhat NB, Rao NG. . Cadaveric fungi: not yet an established forensic tool J. Forensic Leg. Med. (2008) https://doi.org/10.1016/j.jflm.2007.02.001
- 14. Gross ST. Psychotropic drugs in developmental mushrooms: a case study review. J Forensic Sci. 2002;47(6):1–5.
- Ellis MB. More Dematiaceous Hyphomycetes. Kew: Commonwealth Mycological Institute; 1976.
- Cramer J, Vaduz, 1978. [20] B.C. Sutton, The Coelomycetes: Fungi imperfecti with pycnidia, acervuli and stromata, Commonwealth Mycological Institute, Kew, 1980. [21] https://www.cabidigitallibrary.org/ doi/full/10.5555/19801366283Carmichael JW, Kendrick WB, Conners IL, Sigler L. Genera of Hyphomycetes. Edmonton: University of Alberta Press; 1980.

- Carmichael JW, Kendrick WB, Conners IL, Sigler L. Genera of Hyphomycetes, University of Alberta Press, Edmonton, 1980.
- von Arx JA. Genera of Fungi Sporulating in Pure Culture, 3rd ed., J. Cramer, Vaduz, 1981. https://openlibrary.org/works/OL4895937W/The_ genera_of_fungi_sporulating_in_pure_culture?edition=
- Watling R. Hallucinogenic mushrooms. J Forensic Sci Soc. 1983;23(3):179– 184. doi:10.1016/S0015-7368(83)71545-8
- Heim R. Botanical and chemical characterization of a forensic mushroom specimen of the genus Psilocybe. J Forensic Sci Soc. 1966;6(4):305–310. doi:10.1016/S0015-7368(66)70336-3
- Lee JC-I. Identification of members of the genera Panaeolus and Psilocybe by a DNA test: a preliminary test for hallucinogenic fungi. Forensic Sci Int. 2000;113(1-3):233-240. doi:10.1016/s0379-0738(00)00181-
- Nugent KG. Forensic analysis of hallucinogenic fungi: a DNA-based approach. Forensic Sci Int. 2004;140(2–3):147–152. doi:10.1016/j. forsciint.2003.11.022
- Maruyama T, Kawahara N, Yokoyama K, Makino Y, Fukiharu T, Goda Y. Phylogenetic relationship of psychoactive fungi based on rRNA gene for a large subunit and their identification using the TaqMan assay (II). Forensic Sci Int. 2006;164(2–3):201–205. doi:10.1016/j.forsciint.2004.10.028
- Cannon PF, Ingold CT. Fungal Spores: Their Liberation and Dispersal. London: Academic Press; 1971.
- Lacey J, Hudson HJ. Fungal Biology. Cambridge: Cambridge University Press; 1986.
- 26. Dix NJ. Fungal Ecology. London: Chapman & Hall; 1995.
- Alexopoulos CJ, Mims CW, Blackwell M. Introductory Mycology. 4th ed. New York: John Wiley & Sons; 1996.
- Kendrick B. The Fifth Kingdom. 3rd ed. Newburyport: Focus Publishing;
 2000
- Dighton J. Fungi in Ecosystem Processes. Boca Raton: CRC Press; 2003. doi:10.1201/9780203911440
- Carlile MJ, Watkinson SC, Gooday GW. The Fungi. 2nd ed. London: Academic Press; 2001.
- 31. Dighton J, White JF, Oudemans P, editors. The Fungal Community: Its Organization and Role in the Ecosystem. 3rd ed. Boca Raton: CRC Press; 2005. doi:10.1201/9781420027891
- Webster J, Weber R. Introduction to Fungi. 3rd ed. Cambridge: Cambridge University Press; 2007.
- Zycha H, Siepmann R, Linnemann G. Mucorales: Eine Beschreibung aller Gattungen und Arten dieser Pilzgruppe. Lehre: J. Cramer; 1969.
- Ellis MB. Dematiaceous Hyphomycetes. Kew: Commonwealth Mycological Institute; 1971.
- Ellis More Dematiaceous Hyphomycetes (1976) https://www.scirp.org/ reference/ReferencesPapers?ReferenceID=2024743
- R.W.G. Dennis British Ascomycetes (1978) https://biotanz. landcareresearch.co.nz/references/1cb0e23b-36b9-11d5-9548-00d0592d548c
- 37. Sutton BC. The Coelomycetes: Fungi imperfecti with pycnidia, acervuli

- and stromata (1980) https://www.scirp.org/reference/referencespapers ?referenceid=2576110
- 38. Carmichael JW, et al. Genera of Hyphomycetes (1980)
- von Arx JA. Genera of Fungi Sporulating in Pure Culture (1981) https:// www.scirp.org/reference/referencespapers?referenceid=3750125
- Doveri F. Fungi Fimicoli Italici: A Guide to the Recognition of Basidiomycetes and Ascomycetes Living on Faecal Material. Trento: Associazione Micologica Bresadola; 2004.
- 41. Domsch KH, Gams W, Anderson TH. Compendium of Soil Fungi. 2nd ed. Eching: IHW-Verlag; 2007.
- 42. Cannon PF, Kirk PM. Fungal Families of the World. Wallingford: CABI Publishina; 2007. doi:10.1079/9780851998275.0000
- Wiltshire PEJ. Forensic ecology, botany, and palynology: some aspects of their role in criminal investigation. Crim Environ Soil Forensics. Dordrecht: Springer; 2009. p.129–149. doi:10.1007/978-1-4020-9204-6_9
- 44. Allsopp D. et al. Introduction to Biodeterioration (2004)
- Tranchida MC, Cabello MN. Mycology as a forensic tool. Adv Techn Biol Med. 2017:5:226. PDF
- Tranchida MC, Cabello MN. Micología forense. In: Ayon Rosana, ed. Biología Forense. Tucumán: Fundación Miguel Lillo; 2019. p.80−91. Opera Lillogna №54
- 47. Tranchida MC, Bravo Berruezo LE, Stenglein SA. Mycobiota associated with human cadavers: first record in Argentina. Can Soc Forensic Sci J. 2018;51(2):39–47. doi:10.1080/00085030.2018.1463131
- 48. Hitosugi M, Ishii K, Yaguchi T, Chigusa Y, Kurosu A, Kido M, Fungi can be a useful forensic tool. Leg Med (Tokyo). 2006;8(4):240–242. https://doi.org/10.1016/j.legalmed.2006.04.005
- Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108(5):1028-1046. doi:10.3852/16-042
- Malloch D, Blackwell M. Dispersal of fungal diasporas. In: Dighton J, White JF, Oudemans P, eds. The Fungal Community: Its Organization and Role in the Ecosystem. 2nd ed. New York: Marcel Dekker; 1992. p.147–171.
- 51. Wiltshire PEJ. a. Forensic ecology, botany, and palynology: some aspects of their role in criminal investigation. In Criminal and Environmental Soil Forensics. Dordrecht: Springer Science and Business Media, p. 129–149. 2009 https://link.springer.com/chapter/10.1007/978-1-4020-9204-6_9
- Sidrim JJC, Moreira Filho RE, Cordeiro RA, Rocha MFG, Caetano EP, Monteiro AJ, et al. Fungal microbiota dynamics as a postmortem investigation tool: focus on Aspergillus, Penicillium and Candida species. J Appl Microbiol. 2010;108(5):1736–1744. doi:10.1111/j.1365-2672.2009.04573.x
- 53. Tranchida MC, Pelizza SA, Elíades LA. The use of fungi in forensic science: a brief overview. Can Soc Forensic Sci J. 2021;54(1):35–48. Full text
- 54. Hawksworth DL, Wiltshire PEJ. Forensic mycology: The use of fungi in criminal investigations. Forensic Sci Int. 2011; 206(1–3): 1–11. https://doi.org/10.1016/j.forsciint.2010.06.012