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Abstract
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Advanced forensic approaches are necessary to handle digital crimes, as Interpretable machine learning

they must provide transparent methods that foster trust and enable interpretable
evidence in judicial investigations. The current black-box machine learning models
deployed in traditional digital forensics tools accomplish their tasks effectively
yet fail to meet legal standards for admission in court because they lack proper
explainability.
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This study creates an Explainable Artificial Intelligence (XAI) system for digital
forensics to improve flagging events as legal evidence by establishing high
levels of trust and transparency. A digital evidence system employs interpretable
machine learning models together with investigative analysis techniques for the
detection and classification of computer-based irregularities, which generate clear
explanations of the observed anomalies.

The system employs three techniques, including SHAP (Shapley Additive
Explanations) alongside LIME (Local Interpretable Model-agnostic Explanations) and
counterfactual reasoning to deliver understandable explanations about forensic
findings, thus enhancing investigation clarity for law enforcement agents and
attorneys as well as stakeholder professionals.

The system performs successfully on actual digital forensic datasets, thus
boosting investigation speed while minimizing false alerts and improving forensic
decision explanations. The system must demonstrate GDPR and digital evidence
admission framework compliance to maintain legal and ethical correctness for
usage in court procedures.

Forensic digital investigations need explainable Artificial Intelligence as an
essential integration for creating reliable and legally sound practices.

As a result, there is an urgent need to build Al systems
in digital forensics that are not only strong but also
understandable and trustworthy. Explainable Artificial

Introduction

The fast incorporation of Artificial Intelligence (Al) into

digital forensics has increased the efficiency and accuracy
of evidence analysis [1]. Al systems can evaluate enormous
amounts of data, recognize patterns, and flag questionable
occurrences far faster than traditional manual techniques [2].

Despite these advantages, Al-based forensic systems
sometimes operate as "black boxes," providing little to no
information about how certain judgments are made [3]. This
lack of openness creates serious difficulties, especially in legal
circumstances where credibility and traceability of evidence
are crucial.

https://doi.org/10.29328/journal.jfsr.1001089

Intelligence (XAI) solves the interpretability problem by
allowing Al systems to offer human-readable explanations for
their outputs [4].

In the field of digital forensics, XAl can guarantee that
reported events, data breaches, or abnormalities are backed
up by clear, understandable reasoning that can survive judicial
examination [5].

By using XAI concepts, forensic tools can bridge the gap
between complicated computer processes and legal criteria

www.forensicscijournal.com m


https://crossmark.crossref.org/dialog/?doi=10.29328/journal.jfsr.1001089&domain=pdf&date_stamp=2025-07-03

Explainable Al for Digital Forensics: Ensuring Transparency in Legal Evidence Analysis

for evidence presentation. This development is critical for
maintaining judicial integrity, increasing legal practitioners'
acceptance of Al-generated evidence, and protecting the
rights of persons involved in investigations (Figure 1) [6].

Trust is the foundation of every forensic inquiry, and it is
more important when automated technologies are involved.
Without a clear explanation of how Al systems discover and
classify data, there is a danger of misunderstanding, incorrect
conclusions, or even legal objections, which can jeopardize
whole cases [4].

An explainable Al framework would increase the
confidence of forensic analysts and legal parties while also
promoting accountability and repeatability of forensic results
[7]. Thus, developing Al systems with built-in transparency
methods is more than a technological choice; it is a basic
prerequisite for ethical and legal compliance [8].

Creating an explainable forensic Al system involves a
number of issues, including balancing performance and
interpretability, resolving data privacy concerns, and assuring
scalability across various forensic scenarios [9]. These
difficulties are being addressed using techniques such as
model-agnostic explanations, interpretable machine learning
methods, and visualization tools [10].

Furthermore, multidisciplinary collaboration among
computerscientists, forensicspecialists,andlegal professionals
is required to create systems that address both technological
and judicial requirements [11]. The ultimate objective is
to make Al-powered forensic analysis as transparent and
credible as traditional expert evidence (Figure 2).

This study proposes a paradigm for developing an
explainable Al system designed exclusively for digital forensics
applications. By concentrating on techniques to improve the
transparency, dependability, and legal acceptability of flagged
forensic events, this study hopes to contribute to the growing
field of trustworthy Al.

The development of such a system, which combines

Traditional vs XAl-Augmented Forensics
Accuracy

Explainalility

Repeatakjlity

Figure 1: Traditional Vs. XAl-FAugmented Forensics
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Figure 2: Impact of Digital Forensics in Different Sectors.

technical innovation with legal acumen, will pave the way for
Al tools that not only speed up forensic investigations but also
adhere to the greatest principles of justice and fairness.

Methodology

Research design

An experimental XAl system was developed to enhance
cybercrime detection in digital forensics by combining deep
learning with interpretable explanations. Unlike rule-based
tools such as Snort and Wire shark, the Al models adapt to
new attack patterns and are made transparent using SHAP
and LIME [12].

Trained on the CICIDS2017 dataset, the system was
evaluated against traditional forensic methods using
accuracy, precision, recall, and F1-score in a comparative test
[13]. A real-time dashboard presents Al-generated insights
and explanations to investigators, and feedback from forensic
and legal experts validated the tool’s efficiency and legal
soundness.

Data collection and sources

This study uses the CICIDS2017 dataset as its primary
source—an internationally recognized intrusion detection
corpus with simulated real attack traffic. It was selected for
its coverage of modern threats, including DDoS, botnets,
brute-force, and SQL injection attacks [14]. The dataset
combines benign and malicious flows—destination ports,
flow durations, packet counts and lengths, and TCP/IP flags—
enabling time-series anomaly detection.

To enrich training, network traffic logs, system logs
(authentication records and file-system activities), and
memory dumps (running processes and full memory
snapshots) were aggregated, improving detection across
diverse threat types [15]. Additional forensic logs from actual
cases further boosted model robustness.

All data collection followed ethical and legal guidelines
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to safeguard privacy. This real-world, multi-source dataset
empowers the Al-driven system to adapt to emerging cyber
threats while preserving high detection accuracy.

Data Pre-processing

Before training, extensive pre-processing ensured reliable
anomaly detection [16]. Duplicate records were removed,
and missing numerical values were imputed using the mean
or median, while categorical gaps were filled with the mode.
Correlation-based selection and Principal Component Analysis
identified key features and eliminated redundancies [17].

All numerical variables were normalized to a uniform scale.
To address class imbalance, under sampling and oversampling
were applied [18], with SMOTE generating synthetic attack
samples [19]. Categorical features were one-hot encoded.
The dataset was then split 80/20 for training and testing,
and cross-validation was used to prevent data leakage. These
steps optimized model accuracy and interpretability.

Model selection and implementation

The forensic Al system combined deep learning and
traditional machine learning to achieve high cybercrime
detection accuracy [20]. It integrated three core models—
Convolutional Neural Networks (CNN) for pattern recognition
and malware analysis [21], Long Short-Term Memory
networks (LSTM, a type of RNN) for sequential event data
[22], and Decision Trees as an interpretable baseline.

Implementation relied on Tensor-Flow and Keras for
CNN/RNN and Scikit-learn for Decision Trees. Models were
trained on labelled CICIDS2017 data to distinguish malicious
from normal traffic [24] and and cyber defense strategies
were informed by evolving Al-driven techniques [25].
Hyperparameters were optimized via grid and random search
[23], and training ran on GPU-accelerated infrastructure.

Performance was assessed using accuracy, precision, recall,
F1-score, and confusion matrices. Deployed within a real-time
forensic dashboard, this hybrid framework delivers robust
anomaly detection with both adaptability and interpretability.

Model training and evaluation

Multiple structured tests and training procedures ensured
the forensic Al system’s reliability. CNNs [21], LSTM-based
RNNs [22], and Decision Trees were trained on the pre-
processed CICIDS2017 dataset [24] using supervised labels
for normal and malicious activities. Dropout layers and L2
weight decay prevented over fitting, and early stopping—
based on validation performance—halted training to avoid
memorization.

Post-training evaluation employed accuracy, precision,
recall, F1-score, and confusion matrices to assess detection
quality. RNNs excelled at recognizing temporal attack
patterns, while Decision Trees provided clear interpretability
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for investigative transparency. This combination of robust
training protocols and interpretability methods delivered a
dependable framework for digital forensic analysis.

Explain ability techniques: SHAP and LIME

The establishment of Al-based forensic analysis across the
industry depends on both transparency and interpretability
features of its models. This research implements the XAI
methods SHAP and LIME to address the interpretability
challenge. Through its game theory framework, SHAP helps
analyst’s rate feature inputs so they can determine the
influence of different variables that shape Al decisions.

Through SHAP, forensic investigators obtain the ability to
spot crucial network actions along with system behaviours
that enable cyber threats. Each model attribute’s impact on
decision-making appears in the presented feature importance
plots.

LIME constitutes a different method that produces
localized explanations through basic interpretable models
that replicate advanced models. Al systems best explain
forensic cases individually through this approach because
investigators need to see why each network event was
considered suspicious by the system.

The application of LIME allows forensic professionals
to obtain particular case information, which makes the
proof of Al-generated alerts more efficient and their legal
incorporation possible. The combination of SHAP with LIME
lets forensic Al systems use transparent decision explanations
that eliminate their black-box nature. The explain ability
framework improves trust in Al forensic applications so they
can be used legally, and cyber security experts can work with
confidence based on Al results.

Forensic dashboard implementation

The implementation of a forensic dashboard enabled
smooth communication between forensic investigators and
the system controlled by Al. Users can access all real-time
anomaly detection information through a centralized interface,
which shows forensic patterns and lets them understand the
Al-based decisions through SHAP and LIME explanations.

The implementation involved using Flask as the backend
processing framework and Dash together with Polly for
building the interactive frontend display.

Every key functionality on the dashboard presents one
or more detections to investigators alongside Al-based
classification explanations and several investigation tools for
selectinganomalies by severity,alongside attacktypesand time
ranges. The system allows users to view SHAP visualizations
in real time for analyzing [26] feature importance through its
interactive capabilities.

Through the system, investigators can examine particular
incidents and examine relevant forensic evidence, including
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system logs and memory dumps, and then generate reports
for legal purposes. The system received practitioner feedback
that resulted in usability improvements consisting of an
interactive event correlation timeline and artificial intelligence
tools to assist with large database searches.

The forensic dashboard acts as a vital link to facilitate
communication between sophisticated Al models and
practical forensic investigations to maintain digital forensics
efficiency while assuring transparency.

Results and discussion

Data collection results

The Al model was trained on diverse forensic data—
system logs, network traffic, and memory dumps—selected to
represent a wide range of forensic scenarios [15]. CICIDS2017
served as the primary benchmark, featuring brute-force
attacks, botnet activity, and SQL injection events [14].

Raw features were normalized and missing values imputed
to ensure data consistency [16], then key forensic indicators
were extracted through correlation-based selection and PCA
[17], enabling outstanding anomaly detection performance
(Figure 3).

The model gained stronger generalization abilities because
of the multiple data sources it processed. The improved
model reliability and robustness became possible through
these additions to strengthen the system for real-life usage.
Integration of various forensic evidence by the Al system
proved its ability to detect new cyber-attacks, thus enhancing
both its accuracy and trusted performance.

The extensive dataset pre-processing approach became
vital to improve model efficiency because it emphasizes the
significance of high-quality data for the creation of forensic
systems that employ Al-driven explainable systems.

Al model performance

The analysis used Convolutional Neural Network (CNN)
[21], Recurrent Neural Network (RNN) [22], XGB [27], and
Decision Tree as Al models to detect forensic anomalies with
different degrees of efficiency in cyber threat detection. The
CNN model led the group by reaching an outstanding 93.7%
accuracy in its identification of malware patterns.

Figure 3: Data collection and Import.
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Its outstanding performance stems from its effective
handling of spatial order throughout network packets and
log sequences for detailed detection of complicated security
threats. The system demonstrated high effectiveness in
detecting malware because it processed small deviations in
forensic data (Figures 4,5).

The KNN model showed exceptional ability to identify
unauthorized access attempts through its detection system,
which delivered 99.0% accuracy. Access patterns alongside
suspicious authentication sequences could be effectively
tracked by the system because it processed dependencies in
log data sequences.

Through its long-term memory functions, the KNN model
evaluated forensic data systematically until it identified
security hazards that emerged from irregular user actions
(Figures 6,7).

Despite its capability for high computational speed and
clear interpretation, the Random Forest model delivered
an accuracy rate of 1.00%. Although easy to interpret, these
classification rules had restricted effectiveness in handling
intricate and multi-dimensional forensic data. The feature

Figure X: Confusion Matrix of the XGBoost Model
on the CICIDS2017 Dataset
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Figure 7: KNN Model Performance.

learning capability of deep learning models surpasses Decision
Trees and Random Forest because these trees work with
established splitting rules; hence, they struggle to respond to
changing cyber threats (Figures 8,9).
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Deep learning models yielded better generalization and
robustness based on precision, recall, and F1-score metrics
while conducting evaluations in forensic investigations. The
performance strengthening led to diminished operational
capacity of these forensic analysis techniques. The significant
processing power requirements of CNN and RNN models
create problems for implementing their usage in forensic
applications due to their high accuracy rates.

There is a requirement to maximize Al model performance
alongside computational efficiency since this combination
creates practicality for digital forensic investigations (Figures
10,11).

Implementation of explainable Al techniques

LIME and SHAP were integrated to enhance transparency
and interpretability in forensic Al applications. SHAP delivers
global insights by quantifying each feature’s impact on model
outputs, highlighting IP addresses, port anomalies, and packet
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rates as primary predictors. LIME provides local, case-by-
case explanations by perturbing input entries to show which
features drove individual predictions.

This combined strategy bolstered analysts’ understanding,
improved trust among technical and legal stakeholders,
and supported clearer, data-driven justifications in forensic
investigations.

Explainability results and evaluation

A group of forensic analysts and legal professionals
participated in user studies to determine Explainable Al (XAI)
effectiveness in forensic investigations. Participants generated
important information about the user-friendly quality and
explanatory power of Shapley Additive Explanations (SHAP)
alongside Local Interpretable Model-agnostic Explanations
(LIME) in Al-based forensic examinations.

The investigative team utilized SHAP-based explanations
because these explanations presented a key advantage
through global assessment of major influencing features
between connected cases. The importance scoring mechanism
in SHAP lets analysts decode central patterns within digital
forensic incidents by examining network traffic irregularities
and unauthorized system access.

The participants found SHAP explanations to be both
clear and extensive because they detected common forensic
characteristics and enhanced model understanding for all
users.

The utility of LIME surfaced in producing forensic-specific
explanations for aiding forensic investigations on individual
cases. Through its analysis of particular predictions, LIME
permitted investigation teams to evaluate flagged anomalies
by examining detailed contributions from each feature across
specific situations.

The ability to check Al-created alerts became more effective
through this approach because forensic specialists received
exact, detailed reasoning that supported their analytical tasks.

The participants working as legal professionals in the study
stressed that forensic Al systems need to provide explainable
reasons that humans can understand. The participants
observed that complex technical breakdowns, including
jargon, proved difficult to handle in legal courtroom settings.

The former court reception required law enforcement
experts to deliver both clear and in-depth descriptions of Al
forensic outcomes to establish their validity.

Real-world utility of Al-powered forensic tools depends on
how easily their outputs can be understood according to the
evaluation results. A proper ratio between model performance
and explainability standards will help maintain forensically
effective and court-defensible Al-based conclusions.

https://doi.org/10.29328/journal.jfsr.1001089
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Userinterface andforensicinvestigator dashboard

The forensic dashboard offers an interactive hub displaying
flagged security events alongside linked system logs, memory
addresses, and network records [14]. Users can filter alerts
by severity, inspect individual cases, and export court-ready
reports. Customizable workflows adapt to varied investigative
scenarios.

Expert evaluations praised its streamlined analysis but
noted shortcomings in visualizing complex event relationships
[15]. Toaddress this, interactive timelines for event sequencing
and Al-driven search assistants for intelligent forensic data
querying were proposed [16].

Real-world case studies

The system was validated using simulated forensic
cases drawn from historical attack data [27]. It was tested
against ransom ware, unauthorized data exfiltration, and
insider threats. In a ransom ware simulation, the Al detected
anomalous encryption activity—unexpected file encryption
spikes and unauthorized access, flagging early-stage malicious
behaviour [28].

For insider threats, it identified atypical file access outside
normal hours coupled with failed logins; SHAP explanations
pinpointed these features as key contributors to the alert.
This validation confirmed that explainable Al techniques are
essential for trustworthy, efficient forensic investigations.

Comparative analysis with existing systems

A comprehensive comparative evaluation was conducted
to assess the performance of the proposed Al-driven forensic
system against traditional forensic tools such as Snort and
Wireshark. These conventional tools rely on predefined rule-
based anomaly detection mechanisms, which, while effective
in identifying known threats, often struggle with evolving
attack patterns and zero-day exploits.

Additionally, traditional forensic solutions typically
generate a high number of false positives, requiring extensive
manual analysis by investigators.

In contrast, the Al-powered forensic system demonstrated
a significant advantage by dynamically learning from new
attack behaviours. By leveraging machine learning techniques,
the model continuously adapts to emerging threats, reducing
reliance on static rule sets and improving overall detection
accuracy.

This adaptability was particularly beneficial in identifying
sophisticated cyber threats, such as polymorphic malware
and advanced persistent threats (APTs), which often evade
traditional signature-based detection methods (Figure 12).

Beyond accuracy and adaptability, the integration of
explainability techniques through Local Interpretable
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For example, SHAP analysis identified the most influential
features contributing to a flagged anomaly, while LIME
provided case-specific insights for individual investigations.
This enhanced transparency ensured that forensic
investigators and legal professionals could confidently
interpret and validate Al-generated alerts, addressing key
concerns around trust and accountability in forensic Al
applications.

Overall, the comparative study demonstrated that Al-
driven forensic tools, when augmented with explainability
techniques, offer substantial improvements in detection
accuracy, adaptability to new threats, and user comprehension.
These advancements underscore the potential of integrating
machine learning and XAl methodologies to revolutionize
digital forensic investigations, making them more efficient,
reliable, and legally defensible.

Challenges and limitations

High computational costs of CNNs and RNNs created
processing delays that hindered real-time forensic analysis.
Although SHAP and LIME improved transparency, their
layered explanations remained too complex for many non-
technical users. Severe class imbalance—malicious events
being far rarer than normal behavior-also impaired detection
until SMOTE resampling helped rebalance the data, albeit
imperfectly [18,19].

Future work must streamline model architectures,
enhance XAl frameworks for clearer interpretations, and
diversify forensic datasets to boost scalability, efficiency, and
trustworthiness.

Ethical and legal considerations

Al use in forensics raises ethical and legal concerns around
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data security, accountability, and court admissibility. Handling
large digital evidence sets must comply with GDPR and related
regulations to protect sensitive information and prevent
unauthorized access. Algorithmic and data biases—stemming
from imbalanced training sets or model structures—threaten
the fairness and reliability of Al-generated conclusions,
jeopardizing their legal defensibility.

Explainable Al methods are therefore critical for
transparent rationale that satisfies judicial standards and
builds stakeholder trust. Future work should establish
standardized legal frameworks, bias-mitigation protocols,
and data-governance guidelines to ensure ethically and legally
robust Al-assisted forensics.

Future improvements and recommendations

Future forensic Al must optimize algorithms and leverage
GPU/TPU acceleration alongside lightweight models to enable
real-time analysis. Training on diverse, real-world forensic
datasets—augmented and strengthened via adversarial
methods—boosts robustness against novel threats [15,18].
Incorporating investigator feedback through customizable
dashboards, interactive visualizations, and Al-driven query
tools enhances usability and practical adoption [28].

Exploring hybrid rule-based/deep-learning architectures
can marry interpretability with adaptive detection capabilities
[24]. Finally, developing standardized frameworks for
consistent, reliable, and legally compliant Al forensics is
critical for broad law-enforcement deployment.

Conclusion

An XAl forensic system combining CNNs [21] and RNNs
[22] outperformed rule-based tools, achieving higher
precision and fewer false positives by learning complex data
patterns. SHAP delivered global feature-impact insights, while
LIME provided case-specific rationales—both crucial for
investigative transparency and courtroom defensibility.

An interactive dashboard [14] supported event filtering
and evidence visualization; usability testing confirmed its
effectivenessbutcalled forrichervisualizations and Al-assisted
querying. Remaining challenges include computational
efficiency, dataset reliability [15], and legal compliance.
Addressing these will enable broad adoption of transparent,
high-accuracy Al tools in real-world digital forensics.
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